Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Scaling and Wax Deposit Mechanisms of FRP Oil Pipelines
Corresponding Author(s) : Hongfang Lu
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Crude oil occasionally has properties of high wax precipitation temperatures, elevated pour points and high viscosity and this can easily lead to severe wax deposit problems in transport and ultimately result in blockages of the pipeline. There are methods of heating the oil to solve these circumstances. However, the temperature increase aggravates the scale buildup amounts and results in a higher salinity in the water that is produced and low temperatures generate wax precipitation. To deal with these problems, there is a need to study scaling and wax deposit mechanisms of FRP oil pipeline through produced liquids physical property analysis. After experimental analysis, it was discovered that the recommended inlet oil temperature should be 35-40 ºC and in order to reduce the wax and scale buildup amounts, the transportation temperature of XX FRP pipeline is recommended to be 25-30 ºC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.D. Burger, T.K. Perkins and J.H. Striegler, J. Petrol. Technol., 33, 1075 (1981); doi:10.2118/8788-PA.
- M. Halstensen, B.K. Arvoh, L. Amundsen and R. Hoffmann, Fuel, 105, 718 (2013); doi:10.1016/j.fuel.2012.10.004.
- C. Bai and J. Zhang, Energy Fuels, 27, 752 (2013); doi:10.1021/ef3017877.
- D. Eskin, J. Ratulowski and K. Akbarzadeh, Chem. Eng. Sci., 97, 311 (2013); doi:10.1016/j.ces.2013.04.040.
- S. Arumugam, A.S. Kasumu and A.K. Mehrotra, Energy Fuels, 27, 6477 (2013); doi:10.1021/ef401315m.
- D.J. Needham, B.T. Johansson and T. Reeve, Q. J. Mech. Appl. Math., 67, 93 (2014); doi:10.1093/qjmam/hbt025.
- F. Yang, C. Li and D. Wang, Energy Fuels, 27, 1307 (2013); doi:10.1021/ef301921b.
- M.E.R. Dotto and S.S. Camargo Jr., J. Appl. Phys., 107, 014911 (2010); doi:10.1063/1.3280009.
- J. Gong, Y. Zhang, L. Liao, J. Duan, P. Wang and J. Zhou, Energy Fuels, 25, 1624 (2011); doi:10.1021/ef101682u.
References
E.D. Burger, T.K. Perkins and J.H. Striegler, J. Petrol. Technol., 33, 1075 (1981); doi:10.2118/8788-PA.
M. Halstensen, B.K. Arvoh, L. Amundsen and R. Hoffmann, Fuel, 105, 718 (2013); doi:10.1016/j.fuel.2012.10.004.
C. Bai and J. Zhang, Energy Fuels, 27, 752 (2013); doi:10.1021/ef3017877.
D. Eskin, J. Ratulowski and K. Akbarzadeh, Chem. Eng. Sci., 97, 311 (2013); doi:10.1016/j.ces.2013.04.040.
S. Arumugam, A.S. Kasumu and A.K. Mehrotra, Energy Fuels, 27, 6477 (2013); doi:10.1021/ef401315m.
D.J. Needham, B.T. Johansson and T. Reeve, Q. J. Mech. Appl. Math., 67, 93 (2014); doi:10.1093/qjmam/hbt025.
F. Yang, C. Li and D. Wang, Energy Fuels, 27, 1307 (2013); doi:10.1021/ef301921b.
M.E.R. Dotto and S.S. Camargo Jr., J. Appl. Phys., 107, 014911 (2010); doi:10.1063/1.3280009.
J. Gong, Y. Zhang, L. Liao, J. Duan, P. Wang and J. Zhou, Energy Fuels, 25, 1624 (2011); doi:10.1021/ef101682u.