Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ni/TiO2 Catalysts Supported with Al2O3 Over CO2 Reforming
Corresponding Author(s) : J. Huang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
The 5 wt % Ni/TiO2-Al2O3 xerogels catalyst was prepared by the sol-gel synthesis of titanium n-butoxide in methanol with nickel and aluminum. X-Ray diffraction, TG/DTA and SEM were used to characterize the function of addition aluminum to Ni/TiO2 catalyst. The role of aluminum addition promotes the formation of large metallic Ni ensembles increase the dispersion of Ni, suppression of Ni/TiO2 catalyst deactivation and carbon deposition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhang and A. Reller, Chem. Commun., 6, 606 (2002); doi:10.1039/b110509d.
- A.M. Gadalla and B. Bower, Chem. Eng. Sci., 43, 3049 (1988); doi:10.1016/0009-2509(88)80058-7.
- Y.G. Chen and J. Ren, Catal. Lett., 29, 39 (1994); doi:10.1007/BF00814250.
- T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Appl. Catal. A, 183, 273 (1999); doi:10.1016/S0926-860X(99)00071-X.
- Z.L. Zhang and X.E. Verykios, Appl. Catal. A, 138, 109 (1996); doi:10.1016/0926-860X(95)00238-3.
- A. Vejux and P. Courtine, J. Solid State Chem., 23, 93 (1978); doi:10.1016/0022-4596(78)90055-5.
- R.D. Shannon, J. Appl. Phys., 35, 3414 (1964); doi:10.1063/1.1713231.
- T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Appl. Catal. A, 183, 273 (1999); doi:10.1016/S0926-860X(99)00071-X.
- S. Tang, L. Ji, J. Lin, H.C. Zeng, K.L. Tan and K. Li, J. Catal., 194, 424 (2000); doi:10.1006/jcat.2000.2957.
- S. Wang and G.Q. Lu, Ind. Eng. Chem. Res., 36, 5103 (1997); doi:10.1021/ie9703604.
- M.C.J. Bradford and M. Albert Vannice, Catal. Today, 50, 87 (1999); doi:10.1016/S0920-5861(98)00465-9.
- S.-C. Ho and T.-C. Chou, Ind. Eng. Chem. Res., 34, 2279 (1995); doi:10.1021/ie00046a009.
References
Y. Zhang and A. Reller, Chem. Commun., 6, 606 (2002); doi:10.1039/b110509d.
A.M. Gadalla and B. Bower, Chem. Eng. Sci., 43, 3049 (1988); doi:10.1016/0009-2509(88)80058-7.
Y.G. Chen and J. Ren, Catal. Lett., 29, 39 (1994); doi:10.1007/BF00814250.
T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Appl. Catal. A, 183, 273 (1999); doi:10.1016/S0926-860X(99)00071-X.
Z.L. Zhang and X.E. Verykios, Appl. Catal. A, 138, 109 (1996); doi:10.1016/0926-860X(95)00238-3.
A. Vejux and P. Courtine, J. Solid State Chem., 23, 93 (1978); doi:10.1016/0022-4596(78)90055-5.
R.D. Shannon, J. Appl. Phys., 35, 3414 (1964); doi:10.1063/1.1713231.
T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Appl. Catal. A, 183, 273 (1999); doi:10.1016/S0926-860X(99)00071-X.
S. Tang, L. Ji, J. Lin, H.C. Zeng, K.L. Tan and K. Li, J. Catal., 194, 424 (2000); doi:10.1006/jcat.2000.2957.
S. Wang and G.Q. Lu, Ind. Eng. Chem. Res., 36, 5103 (1997); doi:10.1021/ie9703604.
M.C.J. Bradford and M. Albert Vannice, Catal. Today, 50, 87 (1999); doi:10.1016/S0920-5861(98)00465-9.
S.-C. Ho and T.-C. Chou, Ind. Eng. Chem. Res., 34, 2279 (1995); doi:10.1021/ie00046a009.