Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Simulation and Experimental Analysis of Influence of Inlet Flow on Heavy Hydrostatic Bearing Temperature Field
Corresponding Author(s) : Yan Qin Zhang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
A multiple pad round guide was taken to solve the friction failure problem caused by the increase of the local temperature. The relationship between temperature and oil viscosity was systematically studied and an equation was established. Moreover, the fluid temperature field inside the hydrostatic bearing with a rotation speed of 6 rpm was simulated at various flows and viscosities based on finite volume method. The influences of the inlet flow on the temperature of the clearance oil film were also studied. The results show that the shear flux plays an important role at low flux, while the stress difference flux on the clearance oil pad acts a vital part at high flux. In addition, the approximate high temperature area was searched out through numerical simulations of the oil film temperature field of the hydrostatic thrust bearing and then the effective temperature control was found out.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Heinrichson, I.F. Santos and A. Fuerst, J. Tribol., 129, 895 (2007); doi:10.1115/1.2768609.
- D.V. De Pellegrin and D.J. Hargreaves, Tribol. Int., 51, 25 (2012); doi:10.1016/j.triboint.2012.02.008.
- E. Vijay Kumar, V.M. Phalle, S.C. Sharma and S.C. Jain, Analysis of a Worn Multirecess Hydroststatic Journal Bearing System', Proceedings of ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE-2009, Paper No. DETC 2009-86787, San Diego, Californiia USA, August 30- Sept. 2 (2009).
- O. Go and O. Shigeki, Numerical Study on Constant-Flow Hydrostatic Water Bearing for a Machine-Tool Table, 14th International Symposium on Advances in Abrasive Technology, 325, pp. 357-362 (2011).
- Y. Nishitani, S. Yoshimoto and K. Somaya, Int. J. Automation Technol., 5, 773 (2011).
- O.J. Bakker and R.A.J. van Ostayen, J. Tribol., 132, 1 (2010).
- Y. Zhang, Dynamic Characteristic Analysis and Structure Optimization for the Hydrostatic Bearing of Turbo Pump, Harbin Institute of Techno-logy, Harbin, pp. 17-54 (2007).
- Y.L. Fu, X.Z. Ma and J. Zhu, Mechan. Sci. Technol. Aerospace Eng., 21, 711 (2002).
- C.-M. Wang, Mechanical Manage. Develop., 23, 101 (2008).
- The Heavy Mechanics, 6, 38 (2002).
- J.P. Shao, C.- Dai, Y.- Zhang, X.- Yu, X.- Xu and Y.- Wang, J. Hydrodynam., 23, 676 (2011); doi:10.1016/S1001-6058(10)60164-3.
- J.P. Shao, Y.Q. Zhang, Y.- Li, X.- Yu and H. Jiang, J. Central South Univ. Technol., 15(S2), 245 (2008); doi:10.1007/s11771-008-0465-1.
- J.P. Shao, Y.Q. Zhang and P.C. Li, Lubrication Eng., 32, 93 (2007).
- Y.Q. Zhang and X.D. Yang, J. Hydrodynam., 25, 823 (2013).
- Y.Q. Zhang, X.D. Yu, X.D. Yang, G.T. Sun, X.Y. Yu and Z.M. Shi, Key Eng. Mater., 450, 63 (2010); doi:10.4028/www.scientific.net/KEM.450.63.
- X. Yu, X. Meng, H. Jiang, X. Lou, H. Xiang, J. Wang, T. Liu, C. Yang, X. Sun, W. Ji and D. Chen, Adv. Sci. Lett., 4, 2738 (2011); doi:10.1166/asl.2011.1323.
- X.-D. Yu, Key Eng. Mater., 419, 141 (2010).
- P. Zhi-Cheng, Hydrostatic and Pneumostatic Technology, Heilongjiang People Publishing Company, Harbin, pp. 59-75 (1981).
- W. Fu-Jun, Calculation Flow Mechanics Analyses FLUENT Software Principle and Applies, Tsing Hua University Press, Beijing, pp. 45-50 (2004).
References
N. Heinrichson, I.F. Santos and A. Fuerst, J. Tribol., 129, 895 (2007); doi:10.1115/1.2768609.
D.V. De Pellegrin and D.J. Hargreaves, Tribol. Int., 51, 25 (2012); doi:10.1016/j.triboint.2012.02.008.
E. Vijay Kumar, V.M. Phalle, S.C. Sharma and S.C. Jain, Analysis of a Worn Multirecess Hydroststatic Journal Bearing System', Proceedings of ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE-2009, Paper No. DETC 2009-86787, San Diego, Californiia USA, August 30- Sept. 2 (2009).
O. Go and O. Shigeki, Numerical Study on Constant-Flow Hydrostatic Water Bearing for a Machine-Tool Table, 14th International Symposium on Advances in Abrasive Technology, 325, pp. 357-362 (2011).
Y. Nishitani, S. Yoshimoto and K. Somaya, Int. J. Automation Technol., 5, 773 (2011).
O.J. Bakker and R.A.J. van Ostayen, J. Tribol., 132, 1 (2010).
Y. Zhang, Dynamic Characteristic Analysis and Structure Optimization for the Hydrostatic Bearing of Turbo Pump, Harbin Institute of Techno-logy, Harbin, pp. 17-54 (2007).
Y.L. Fu, X.Z. Ma and J. Zhu, Mechan. Sci. Technol. Aerospace Eng., 21, 711 (2002).
C.-M. Wang, Mechanical Manage. Develop., 23, 101 (2008).
The Heavy Mechanics, 6, 38 (2002).
J.P. Shao, C.- Dai, Y.- Zhang, X.- Yu, X.- Xu and Y.- Wang, J. Hydrodynam., 23, 676 (2011); doi:10.1016/S1001-6058(10)60164-3.
J.P. Shao, Y.Q. Zhang, Y.- Li, X.- Yu and H. Jiang, J. Central South Univ. Technol., 15(S2), 245 (2008); doi:10.1007/s11771-008-0465-1.
J.P. Shao, Y.Q. Zhang and P.C. Li, Lubrication Eng., 32, 93 (2007).
Y.Q. Zhang and X.D. Yang, J. Hydrodynam., 25, 823 (2013).
Y.Q. Zhang, X.D. Yu, X.D. Yang, G.T. Sun, X.Y. Yu and Z.M. Shi, Key Eng. Mater., 450, 63 (2010); doi:10.4028/www.scientific.net/KEM.450.63.
X. Yu, X. Meng, H. Jiang, X. Lou, H. Xiang, J. Wang, T. Liu, C. Yang, X. Sun, W. Ji and D. Chen, Adv. Sci. Lett., 4, 2738 (2011); doi:10.1166/asl.2011.1323.
X.-D. Yu, Key Eng. Mater., 419, 141 (2010).
P. Zhi-Cheng, Hydrostatic and Pneumostatic Technology, Heilongjiang People Publishing Company, Harbin, pp. 59-75 (1981).
W. Fu-Jun, Calculation Flow Mechanics Analyses FLUENT Software Principle and Applies, Tsing Hua University Press, Beijing, pp. 45-50 (2004).