Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Atomization Characteristics of Gas-Liquid Two Phase Rotation Flow Spray Nozzle
Corresponding Author(s) : Xiaodong Xiang
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
In order to improve the characteristics of the spray nozzle, a new kind of gas-liquid two-phase rotation flow nozzle is developed. Spray characters and inner velocity distribution for the two-phase rotation flow nozzle are investigated by numerical simulation and experimental measuring, respectively. The simulation results obtained by the computing fluid software, CFX, illustrated that the liquid is changed into a rotary band due to the high gas shear strength. Therefore, the fine water droplets can be easily produced when this two-phase fluid flows to the end of the nozzle. The atomized droplet size is measured by winner 313 spray laser particle size analyzer in the laboratory condition. The experimental data show that the relation of the spray median diameter and the gas-liquid ratio follows a power function. It is helpful to determine the operation parameters for its application in industry.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lingyun and H. Xiaochun, Technical Manual of Nozzle, Sinopec Press, Beijing (2007).
- R.D. Reitz and F.V. Bracco, Phys. Fluids, 25, 1730 (1982); doi:10.1063/1.863650.
- L.-J. Yang, W. Wang, Z.-B. Hu, and Z.P. Zhang, J. Beijing Univ. Aeronautics Astronautics, 413 (2002).
- W.F. Wu, Q.K. Feng, Q.J. Xiang and J.X. Lu, Nuclear Power Eng., 28, 34 (2007).
- Z. Feras, Batarseh, L. Lia, V. Roisman and C. Tropea, ILASS Americas, 21#Annual Conference on Liquid Atomization and Spray System, Orlando, Florida, pp. 18-21 (2008).
- P.R. Hu, L. Hui and Y.Q. Wang, J. Filtr. Sep., 21, 20 (2011).
- Y. Zhou, M. Zhang, D. Wang and L. Wang, Ind. Eng. Chem. Res., 44, 8830 (2005); doi:10.1021/ie050457n.
- S.H. Wang, J.S. Chang and A.A. Berezin, J. Electrostatics, 30, 235 (1993); doi:10.1016/0304-3886(93)90078-L.
- W.-M. Cheng, G. Zhou, Q.-M. Zuo, W. Nie and G. Wang, J. China Coal Soc., 35, 1308 (2010).
- X.D. Xiang, 2009100631563 (2009).
- W. Houqing, S. Chao and X.J. Wang, China Petrol. Machinery, 33, 9 (2005).
- B. Dobrowolski, K. Krècisz and A. Spyra, Task Quarterly, 4, 439 (2005).
- S.A. Orszag, J. Sci. Comput., 1, 1 (1986); doi:10.1007/BF01061451.
- Q. Chen, Numerical Heat Transfer Part B-Fundamentals, 28, 353 (1995); doi:10.1080/10407799508928838.
References
H. Lingyun and H. Xiaochun, Technical Manual of Nozzle, Sinopec Press, Beijing (2007).
R.D. Reitz and F.V. Bracco, Phys. Fluids, 25, 1730 (1982); doi:10.1063/1.863650.
L.-J. Yang, W. Wang, Z.-B. Hu, and Z.P. Zhang, J. Beijing Univ. Aeronautics Astronautics, 413 (2002).
W.F. Wu, Q.K. Feng, Q.J. Xiang and J.X. Lu, Nuclear Power Eng., 28, 34 (2007).
Z. Feras, Batarseh, L. Lia, V. Roisman and C. Tropea, ILASS Americas, 21#Annual Conference on Liquid Atomization and Spray System, Orlando, Florida, pp. 18-21 (2008).
P.R. Hu, L. Hui and Y.Q. Wang, J. Filtr. Sep., 21, 20 (2011).
Y. Zhou, M. Zhang, D. Wang and L. Wang, Ind. Eng. Chem. Res., 44, 8830 (2005); doi:10.1021/ie050457n.
S.H. Wang, J.S. Chang and A.A. Berezin, J. Electrostatics, 30, 235 (1993); doi:10.1016/0304-3886(93)90078-L.
W.-M. Cheng, G. Zhou, Q.-M. Zuo, W. Nie and G. Wang, J. China Coal Soc., 35, 1308 (2010).
X.D. Xiang, 2009100631563 (2009).
W. Houqing, S. Chao and X.J. Wang, China Petrol. Machinery, 33, 9 (2005).
B. Dobrowolski, K. Krècisz and A. Spyra, Task Quarterly, 4, 439 (2005).
S.A. Orszag, J. Sci. Comput., 1, 1 (1986); doi:10.1007/BF01061451.
Q. Chen, Numerical Heat Transfer Part B-Fundamentals, 28, 353 (1995); doi:10.1080/10407799508928838.