Copyright (c) 2014 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Quantum Chemical of Frontier Molecular Orbit of 4-Amino-Cobalt Phthalocyanine
Corresponding Author(s) : Juanqin Xue
Asian Journal of Chemistry,
Vol. 26 No. 17 (2014): Vol 26 Issue 17
Abstract
Using the B3LYP/3-21G* of the density functional method,quantum chemical study of the charge, bond length and frontier molecular orbit of CoTAPc (4-amino-cobalt phthalocyanine) has been performed. The results show that the nitrogen atoms have strong nucleophilic activity while the hydrogen atoms have strong electrophilic activity in CoTAPc. Secondly, the two nitrogen atoms of N5 and N10 can form covalent bonds with Co atom and the N13 and N18 can connect with Co atom by the coordinate bonds. Thirdly, the composition of the highest occupied molecular orbital (HOMO) of the CoTAPc mainly comes from the contribution of carbon atoms and nitrogen atoms, while the constitution of the lowest unoccupied molecular orbital (LUMO) mainly comes from the contribution of carbon, nitrogen and cobalt atoms. The oxidation of CoTAPc mainly occurs on the C-C bond while its deoxidization mainly happens on the C-C, C-N and Co-N bonds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yu, S. Zhang, W. He, Z. Zhang, F. Guo, C. Zhan and Y. Huang, Chin. J. Org. Chem, 32, 1981 (2012); doi:10.6023/cjoc201203015.
- M.O. Liu and A.T. Hu, J. Organomet. Chem., 689, 2450 (2004); doi:10.1016/j.jorganchem.2004.05.008.
- T. Qiu, X. Xu, J. Liu and X. Qian, Dyes Pigments, 83, 127 (2009); doi:10.1016/j.dyepig.2009.04.007.
- W. Chen, C. Bi and T. Li, Environ. Chem., 31, 1043 (2012).
- X. Cai, Structures, Spectrum Properties and OFET Performance of Phthalocyanine Complexes Based on Density Functional Theory Calculations, Shandong University, Shandong (2009).
- E. Lukyanets, J. Porphyr. Phthalocyan., 3, 424 (1999); doi:10.1002/(SICI)1099-1409(199908/10)3:6/7<424::AID-JPP151>3.0.CO;2-K.
- J. Sun and C. Shan, J. South-Central Univ. National. (Nat. Sci. Ed.), 29, 10 (2010).
- Q. Bai, C. Zhang and C. Cheng, Acta Phys.-Chim., 27, 1195 (2011).
- C. Ren, M. Song and L. Zhang, Text. Res. J., 33, 81 (2012).
- Y. Wu, H. Tian and K. Chen, Dyestuffs Ind., 35 (1998).
- H. Zhao and B. Xu, J. Chem. Educ., 1, 1 (2001).
- J.Q. Xue, X. Zhao and J. Ma, Spectrosc. Spect. Anal., 33, 959 (2013).
- H. Zhou and A.J. Xie, Spectrosc. Spect. Anal., 28, 1039 (2008).
- T. Li, Cyclophanes: The Synthesis, Characterization and Quantum Chemical Calculation, Northwest University, Shaanxi (2007).
References
X. Yu, S. Zhang, W. He, Z. Zhang, F. Guo, C. Zhan and Y. Huang, Chin. J. Org. Chem, 32, 1981 (2012); doi:10.6023/cjoc201203015.
M.O. Liu and A.T. Hu, J. Organomet. Chem., 689, 2450 (2004); doi:10.1016/j.jorganchem.2004.05.008.
T. Qiu, X. Xu, J. Liu and X. Qian, Dyes Pigments, 83, 127 (2009); doi:10.1016/j.dyepig.2009.04.007.
W. Chen, C. Bi and T. Li, Environ. Chem., 31, 1043 (2012).
X. Cai, Structures, Spectrum Properties and OFET Performance of Phthalocyanine Complexes Based on Density Functional Theory Calculations, Shandong University, Shandong (2009).
E. Lukyanets, J. Porphyr. Phthalocyan., 3, 424 (1999); doi:10.1002/(SICI)1099-1409(199908/10)3:6/7<424::AID-JPP151>3.0.CO;2-K.
J. Sun and C. Shan, J. South-Central Univ. National. (Nat. Sci. Ed.), 29, 10 (2010).
Q. Bai, C. Zhang and C. Cheng, Acta Phys.-Chim., 27, 1195 (2011).
C. Ren, M. Song and L. Zhang, Text. Res. J., 33, 81 (2012).
Y. Wu, H. Tian and K. Chen, Dyestuffs Ind., 35 (1998).
H. Zhao and B. Xu, J. Chem. Educ., 1, 1 (2001).
J.Q. Xue, X. Zhao and J. Ma, Spectrosc. Spect. Anal., 33, 959 (2013).
H. Zhou and A.J. Xie, Spectrosc. Spect. Anal., 28, 1039 (2008).
T. Li, Cyclophanes: The Synthesis, Characterization and Quantum Chemical Calculation, Northwest University, Shaanxi (2007).