Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics of Oxidation of Atropine by K2Cr2O7 in Acidic Aqueous Solutions
Corresponding Author(s) : Abdullah I. Saleh
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
Oxidation of atropine (ATN) by K2Cr2O7 has been studied kinetically in aqueous strongly acidic solutions. The kinetics of this reaction was investigated at different temperatures. A constant pH and constant ionic strength were maintained constant throughout all measurements. The concentration of atropine was around an order of magnitude greater than that of K2Cr2O7, that is under pseudo first order kinetics. Rate constants were obtained by monitoring change in absorbance of K2Cr2O7 with time at its predetermined maximum wavelength. Overall rate constant and the orders of the reaction in terms of concentrations of both atropine and K2Cr2O7 were determined. Reaction runs at different temperature allows activation energy of the process to be convoluted from temperature effect on the rate of the reaction. A resonable mechanism for the reaction was proposed in accordance with kinetics results.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.J. Meyer and H. Taube, eds.: G. Wilkinson, R.D. Gillard and J.A McCleverty, In Comprehensive Coordination Chemistry, Pergamon: Elmsford, N.Y., vol. 1, Chap. 7.2 (1987).
- E.O. Odebunmi, A.I. Obike and S.O. Owalude, Int. J. Biol. Chem. Sci., 3, 178 (2009); https://doi.org/10.4314/ijbcs.v3i2.44485.
- M.S. Manhas, P. Kumar, F. Mohammed and Z. Khan, Colloids Surf. A Physicochem. Eng. Asp., 320, 240 (2008); https://doi.org/10.1016/j.colsurfa.2008.02.003.
- P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Transition Met. Chem., 33, 405 (2008); https://doi.org/10.1007/s11243-007-9050-y.
- S.A. Chimatadar, T. Basavaraj and S.T. Nandibewoor, Polyhedron, 25, 2976 (2006); https://doi.org/10.1016/j.poly.2006.05.002.
- S.A. Chimatadar, S.B. Koujalagi and S.T. Nandibewoor, Transition Met. Chem., 26, 662 (2001); https://doi.org/10.1023/A:1012019626879.
- Z. Khan and K. Id-Din, Transition Metal Chem., 26, 672 (2001); https://doi.org/10.1023/A:1012056310950.
- R.N. Bose, B. Moghaddas and E. Gelerinter, Inorg. Chem., 31, 1987 (1992); https://doi.org/10.1021/ic00037a004.
- R. Colton, Coord. Chem. Rev., 78, 1 (1987); https://doi.org/10.1016/0010-8545(87)85025-7.
- B. Banas, Inorg. Chim. Acta, 53, L13 (1981); https://doi.org/10.1016/S0020-1693(00)84725-8.
- F. Hasan and J. Rocek, J. Am. Chem. Soc., 97, 1444 (1975); https://doi.org/10.1021/ja00839a028.
- R.S. Shettar and S.T. Nandibewoor, J. Mol. Catal. Chem., 234, 137 (2005); https://doi.org/10.1016/j.molcata.2005.02.026.
- A.I. Saleh, S.K. Al-Ghreizat and H.M. Abdel-Halim, Asian J. Chem., 27, 3877 (2015); https://doi.org/10.14233/ajchem.2015.19039.
- A. da Silva Gonçalves, T.C.C. França, M.S. Caetano and T.C. Ramalho, J. Biomol. Struct. Dyn., 32, 301 (2014); https://doi.org/10.1080/07391102.2013.765361.
- C. B. Klein, ed.: L.W. Chang, Toxicology of Metals, CRC Lewis, Publishers, New York (1996).
- D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman and C. Mabuni, Crit. Rev. Environ. Sci. Technol., 29, 1 (1999); https://doi.org/10.1080/10643389991259164.
- S.A. Katz and H. Salem, The Biological and Environmental Chemistry of Chromium, VCH Publishers: New York (1994).
- International Agency for Research on Cancer (IARC), Overall Evaluations of Carcinogenicity to Humans, IARC, vol. 83, p. 203 (2004).
- J. Guertin, J. A. Jacobs and C. P. Avakian, Chromium (VI) Handbook, CRC Press, Boca Raton (2005).
- R. Codd, Curr. Opin. Chem. Biol., 7, 213 (2003); https://doi.org/10.1016/S1367-5931(03)00017-6. A. Levina, L. Zhang and P.A. Lay, J. Am. Chem. Soc., 132, 8720 (2010); https://doi.org/10.1021/ja101675w.
- M. Gil, D. Escolar, N. Iza and J.L. Montero, Appl. Spectrosc., 40, 1156 (1986); https://doi.org/10.1366/0003702864507611.
- M.M. Sena, I.S. Scarminio, K.E. Collins and C.H. Collins, Talanta, 53, 453 (2000); https://doi.org/10.1016/S0039-9140(00)00513-0.
- D. Mohajer and S. Tangestaninejad, Tetrahedron Lett., 35, 945 (1994); https://doi.org/10.1016/S0040-4039(00)76007-2.
- M. Meti, S.T. Nandibewoor and S.A. Chimatadar, Turk. J. Chem., 38, 477 (2014); https://doi.org/10.3906/kim-1307-4.
- M.S. Manhas, P. Kumar, F. Mohammed and Z. Khan, Colloids Surf., 320, 240 (2008); https://doi.org/10.1016/j.colsurfa.2008.02.003.
References
T.J. Meyer and H. Taube, eds.: G. Wilkinson, R.D. Gillard and J.A McCleverty, In Comprehensive Coordination Chemistry, Pergamon: Elmsford, N.Y., vol. 1, Chap. 7.2 (1987).
E.O. Odebunmi, A.I. Obike and S.O. Owalude, Int. J. Biol. Chem. Sci., 3, 178 (2009); https://doi.org/10.4314/ijbcs.v3i2.44485.
M.S. Manhas, P. Kumar, F. Mohammed and Z. Khan, Colloids Surf. A Physicochem. Eng. Asp., 320, 240 (2008); https://doi.org/10.1016/j.colsurfa.2008.02.003.
P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Transition Met. Chem., 33, 405 (2008); https://doi.org/10.1007/s11243-007-9050-y.
S.A. Chimatadar, T. Basavaraj and S.T. Nandibewoor, Polyhedron, 25, 2976 (2006); https://doi.org/10.1016/j.poly.2006.05.002.
S.A. Chimatadar, S.B. Koujalagi and S.T. Nandibewoor, Transition Met. Chem., 26, 662 (2001); https://doi.org/10.1023/A:1012019626879.
Z. Khan and K. Id-Din, Transition Metal Chem., 26, 672 (2001); https://doi.org/10.1023/A:1012056310950.
R.N. Bose, B. Moghaddas and E. Gelerinter, Inorg. Chem., 31, 1987 (1992); https://doi.org/10.1021/ic00037a004.
R. Colton, Coord. Chem. Rev., 78, 1 (1987); https://doi.org/10.1016/0010-8545(87)85025-7.
B. Banas, Inorg. Chim. Acta, 53, L13 (1981); https://doi.org/10.1016/S0020-1693(00)84725-8.
F. Hasan and J. Rocek, J. Am. Chem. Soc., 97, 1444 (1975); https://doi.org/10.1021/ja00839a028.
R.S. Shettar and S.T. Nandibewoor, J. Mol. Catal. Chem., 234, 137 (2005); https://doi.org/10.1016/j.molcata.2005.02.026.
A.I. Saleh, S.K. Al-Ghreizat and H.M. Abdel-Halim, Asian J. Chem., 27, 3877 (2015); https://doi.org/10.14233/ajchem.2015.19039.
A. da Silva Gonçalves, T.C.C. França, M.S. Caetano and T.C. Ramalho, J. Biomol. Struct. Dyn., 32, 301 (2014); https://doi.org/10.1080/07391102.2013.765361.
C. B. Klein, ed.: L.W. Chang, Toxicology of Metals, CRC Lewis, Publishers, New York (1996).
D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman and C. Mabuni, Crit. Rev. Environ. Sci. Technol., 29, 1 (1999); https://doi.org/10.1080/10643389991259164.
S.A. Katz and H. Salem, The Biological and Environmental Chemistry of Chromium, VCH Publishers: New York (1994).
International Agency for Research on Cancer (IARC), Overall Evaluations of Carcinogenicity to Humans, IARC, vol. 83, p. 203 (2004).
J. Guertin, J. A. Jacobs and C. P. Avakian, Chromium (VI) Handbook, CRC Press, Boca Raton (2005).
R. Codd, Curr. Opin. Chem. Biol., 7, 213 (2003); https://doi.org/10.1016/S1367-5931(03)00017-6. A. Levina, L. Zhang and P.A. Lay, J. Am. Chem. Soc., 132, 8720 (2010); https://doi.org/10.1021/ja101675w.
M. Gil, D. Escolar, N. Iza and J.L. Montero, Appl. Spectrosc., 40, 1156 (1986); https://doi.org/10.1366/0003702864507611.
M.M. Sena, I.S. Scarminio, K.E. Collins and C.H. Collins, Talanta, 53, 453 (2000); https://doi.org/10.1016/S0039-9140(00)00513-0.
D. Mohajer and S. Tangestaninejad, Tetrahedron Lett., 35, 945 (1994); https://doi.org/10.1016/S0040-4039(00)76007-2.
M. Meti, S.T. Nandibewoor and S.A. Chimatadar, Turk. J. Chem., 38, 477 (2014); https://doi.org/10.3906/kim-1307-4.
M.S. Manhas, P. Kumar, F. Mohammed and Z. Khan, Colloids Surf., 320, 240 (2008); https://doi.org/10.1016/j.colsurfa.2008.02.003.