Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photo-Electrochemical Water Splitting Behaviour of CdSe Quantum Dots Sensitized Ferroelectric PbTiO3 Perovskite Heterostructure
Corresponding Author(s) : A. Cyril
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
Herein, we report the photo-electrochemical water splitting of CdSe quantum dots sensitized PbTiO3 perovskite in a sacrificial electrolyte. TheCdSe quantum dots are synthesized via hot injection method and perovskite. The PbTiO3 is synthesized via hydrothermal synthesis procedure. The CdSe quantum dots are sensitized to PbTiO3 using mercaptopropionic acid as linker to form hetero-structure.The phase purity and crystallinity of CdSe quantum dots and PbTiO3 are examined using X-ray diffraction analysis and the morphologies are studied using field emission scanning electron microscopy (FESEM) and transition electron microscopy (TEM) techniques. The optical properties are examined using UV-visible spectroscopy and the band gap of quantum dots and perovskite are derived. The XRD analysis of CdSe quantum dots revealed the high crystallinity with a cubic phase and tetragonal phase for PbTiO3. The surface morphological observations demonstrate that PbTiO3 size in the range of 80-120 nm in size. The TEM analysis revealed the single crystalline nature for PbTiO3 nanoparticles. The optical band gap of PbTiO3 is found to be 3.7 and 2.25 eV for CdSe quantum dots. The CdSe quantum dots sensitized PbTiO3 hetero-structure's photo-electrochemical water splitting behaviour is examined in 1 M Na2S electrolyte under 100 mW/cm2 light illumination. As photoanode, CdSe quantum dots sensitized PbTiO3 heterostructure demonstrated 63 mA/cm2 under illumination and 51 mA/cm2 dark at 0.8 V (vs. Ag/AgCl), which implies that photocurrent density of 12 mA/cm2 at 0.8 V (vs. Ag/AgCl) and also showed 1.2 mmol/g of H2 evolution during the period of 4 h in chrono-amperometry studies at 0.8 V (vs. Ag/AgCl). This work discusses the significance and novelty of the usage of CdSe quantum dots sensitized PbTiO3 heterostructureas photo-electrocatalyst and paves pathway for newer materials development for enhanced photo-electrochemical water splitting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A Mater. Energy Sustain., 3, 2485 (2015); https://doi.org/10.1039/C4TA04461D.
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori and N.S. Lewis, Chem. Rev., 110, 6446 (2010); https://doi.org/10.1021/cr1002326.
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
- J. Su, L. Guo, N. Bao and C.A. Grimes, Nano Lett., 11, 1928 (2011); https://doi.org/10.1021/nl2000743.
- S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso and G. Saracco, Phys. Chem. Chem. Phys., 17, 7775 (2015); https://doi.org/10.1039/C4CP05857G.
- F.E. Osterloh, Chem. Soc. Rev., 42, 2294 (2013); https://doi.org/10.1039/C2CS35266D.
- R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 48, 3833 (2012); https://doi.org/10.1039/c2cc30713h.
- W.W. Yu, L. Qu, W. Guo and X. Peng, Chem. Mater., 15, 2854 (2003); https://doi.org/10.1021/cm034081k.
- I. Robel, M. Kuno and P.V. Kamat, J. Am. Chem. Soc., 129, 4136 (2007); https://doi.org/10.1021/ja070099a.
- S. Chaguetmi, F. Mammeri, S. Nowak, P. Decorse, H. Lecoq, M. Gaceur, J. Ben Naceur, S. Achour, R. Chtourou and S. Ammar, RSC Adv., 3, 2572 (2013); https://doi.org/10.1039/c2ra21684a.
- Y. Tak, S.J. Hong, J.S. Lee and K. Yong, Cryst. Growth Des., 9, 2627 (2009); https://doi.org/10.1021/cg801076b.
- F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux and R. Schneider, Eur. J. Inorg. Chem., 794 (2011); https://doi.org/10.1002/ejic.201000790.
- F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning and F.E. Osterloh, Chem Commun., 2206 (2008); https://doi.org/10.1039/B718796C.
- A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P.V. Kamat, J. Am. Chem. Soc., 130, 4007 (2008); https://doi.org/10.1021/ja0782706.
- L. Liu, J. Hensel, R.C. Fitzmorris, Y. Li and J.Z. Zhang, J. Phys. Chem. Lett., 1, 155 (2010); https://doi.org/10.1021/jz900122u.
- M. Seol, H. Kim, W. Kim and K. Yong, Electrochem. Commun., 12, 1416 (2010); https://doi.org/10.1016/j.elecom.2010.07.035.
- H. Wang, W. Zhu, B. Chong and K. Qin, Int. J. Hydrogen Energy, 39, 90 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.048.
- G. Wang, X. Yang, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 10, 1088 (2010); https://doi.org/10.1021/nl100250z.
- J. Huang, S. Liu, L. Kuang, Y. Zhao, T. Jiang, S. Liu and X. Xu, J. Environ. Sci., 25, 2487 (2013); https://doi.org/10.1016/S1001-0742(12)60330-1.
- Z. Ali, I. Shakir and D.J. Kang, J. Mater. Chem. A Mater. Energy Sustain., 2, 6474 (2014); https://doi.org/10.1039/C3TA15439D.
- R.R. Devarapalli, C.K. Kamaja and M.V. Shelke, J. Mater. Chem. A Mater. Energy Sustain., 2, 13352 (2014); https://doi.org/10.1039/C4TA02775B.
- Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye and Y. Bi, Sci. Rep., 3, 2720 (2013); https://doi.org/10.1038/srep02720.
- L. Etgar, J. Park, C. Barolo, V. Lesnyak, S.K. Panda, P. Quagliotto, S.G. Hickey, M.K. Nazeeruddin, A. Eychmüller, G. Viscardi and M. Grätzel, RSC Adv., 2, 2748 (2012); https://doi.org/10.1039/c2ra20192e.
- Y. Li, H. Sun, N. Wang, W. Fang and Z. Li, Solid State Sci., 37, 18 (2014); https://doi.org/10.1016/j.solidstatesciences.2014.08.003.
- A. Yourdkhani and G. Caruntu, J. Phys. Chem. C, 115, 14797 (2011); https://doi.org/10.1021/jp202127t.
- M. Yashima, K. Omoto, J. Chen, H. Kato and X. Xing, Chem. Mater., 23, 3135 (2011); https://doi.org/10.1021/cm201184y.
- P. Hu, J. Chen, J. Deng and X. Xing, J. Am. Chem. Soc., 132, 1925 (2010); https://doi.org/10.1021/ja908014u.
- M. Park, S. Hong, J. Kim, Y. Kim, S. Buhlmann, Y.K. Kim and K. No, Appl. Phys. Lett., 94, 092901 (2009); https://doi.org/10.1063/1.3081120.
- D. Arney, T. Watkins and P.A. Maggard, J. Am. Ceram. Soc., 94, 1483 (2011); https://doi.org/10.1111/j.1551-2916.2010.04262.x.
- R. Li, Y. Zhao and C. Li, Faraday Discuss., 198, 463 (2017); https://doi.org/10.1039/C6FD00199H.
- A. Kakekhani and S. Ismail-Beigi, J. Mater. Chem. A Mater. Energy Sustain., 4, 5235 (2016); https://doi.org/10.1039/C6TA00513F.
- C.W. Ahn, P.H. Borse, J.H. Kim, J.Y. Kim, J.S. Jang, C.-R. Cho, J.-H. Yoon, B. Lee, J.-S. Bae, H.G. Kim and J.S. Lee, Appl. Catal. B, 224, 804 (2018); https://doi.org/10.1016/j.apcatb.2017.11.002.
- J.S. Jang, C.W. Ahn, S.S. Won, J.H. Kim, W. Choi, B.-S. Lee, J.-H. Yoon, H.G. Kim and J.S. Lee, J. Phys. Chem. C, 121, 15063 (2017); https://doi.org/10.1021/acs.jpcc.7b03081.
- T.B. Hook, Joule, 2, 1 (2018); https://doi.org/10.1016/j.joule.2017.10.014.
- K. Iwashina and A. Kudo, J. Am. Chem. Soc., 133, 13272 (2011); https://doi.org/10.1021/ja2050315.
- G. Sreedhar, A. Sivanantham, S. Venkateshwaran, S.K. Panda and M. Eashwar, J. Mater. Chem. A Mater. Energy Sustain., 3, 13476 (2015); https://doi.org/10.1039/C5TA00304K.
- F. Wang, Y. Liu, Z. Ma, H. Li, Z. Kang and M. Shen, New J. Chem., 37, 290 (2013); https://doi.org/10.1039/C2NJ40988G.
- W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, and X. Wang, Nano Lett., 11, 7574 (2015); https://doi.org/10.1021/acs.nanolett.5b03988.
References
X. Li, J. Yu, J. Low, Y. Fang, J. Xiao and X. Chen, J. Mater. Chem. A Mater. Energy Sustain., 3, 2485 (2015); https://doi.org/10.1039/C4TA04461D.
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori and N.S. Lewis, Chem. Rev., 110, 6446 (2010); https://doi.org/10.1021/cr1002326.
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
J. Su, L. Guo, N. Bao and C.A. Grimes, Nano Lett., 11, 1928 (2011); https://doi.org/10.1021/nl2000743.
S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso and G. Saracco, Phys. Chem. Chem. Phys., 17, 7775 (2015); https://doi.org/10.1039/C4CP05857G.
F.E. Osterloh, Chem. Soc. Rev., 42, 2294 (2013); https://doi.org/10.1039/C2CS35266D.
R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 48, 3833 (2012); https://doi.org/10.1039/c2cc30713h.
W.W. Yu, L. Qu, W. Guo and X. Peng, Chem. Mater., 15, 2854 (2003); https://doi.org/10.1021/cm034081k.
I. Robel, M. Kuno and P.V. Kamat, J. Am. Chem. Soc., 129, 4136 (2007); https://doi.org/10.1021/ja070099a.
S. Chaguetmi, F. Mammeri, S. Nowak, P. Decorse, H. Lecoq, M. Gaceur, J. Ben Naceur, S. Achour, R. Chtourou and S. Ammar, RSC Adv., 3, 2572 (2013); https://doi.org/10.1039/c2ra21684a.
Y. Tak, S.J. Hong, J.S. Lee and K. Yong, Cryst. Growth Des., 9, 2627 (2009); https://doi.org/10.1021/cg801076b.
F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux and R. Schneider, Eur. J. Inorg. Chem., 794 (2011); https://doi.org/10.1002/ejic.201000790.
F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning and F.E. Osterloh, Chem Commun., 2206 (2008); https://doi.org/10.1039/B718796C.
A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P.V. Kamat, J. Am. Chem. Soc., 130, 4007 (2008); https://doi.org/10.1021/ja0782706.
L. Liu, J. Hensel, R.C. Fitzmorris, Y. Li and J.Z. Zhang, J. Phys. Chem. Lett., 1, 155 (2010); https://doi.org/10.1021/jz900122u.
M. Seol, H. Kim, W. Kim and K. Yong, Electrochem. Commun., 12, 1416 (2010); https://doi.org/10.1016/j.elecom.2010.07.035.
H. Wang, W. Zhu, B. Chong and K. Qin, Int. J. Hydrogen Energy, 39, 90 (2014); https://doi.org/10.1016/j.ijhydene.2013.10.048.
G. Wang, X. Yang, F. Qian, J.Z. Zhang and Y. Li, Nano Lett., 10, 1088 (2010); https://doi.org/10.1021/nl100250z.
J. Huang, S. Liu, L. Kuang, Y. Zhao, T. Jiang, S. Liu and X. Xu, J. Environ. Sci., 25, 2487 (2013); https://doi.org/10.1016/S1001-0742(12)60330-1.
Z. Ali, I. Shakir and D.J. Kang, J. Mater. Chem. A Mater. Energy Sustain., 2, 6474 (2014); https://doi.org/10.1039/C3TA15439D.
R.R. Devarapalli, C.K. Kamaja and M.V. Shelke, J. Mater. Chem. A Mater. Energy Sustain., 2, 13352 (2014); https://doi.org/10.1039/C4TA02775B.
Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye and Y. Bi, Sci. Rep., 3, 2720 (2013); https://doi.org/10.1038/srep02720.
L. Etgar, J. Park, C. Barolo, V. Lesnyak, S.K. Panda, P. Quagliotto, S.G. Hickey, M.K. Nazeeruddin, A. Eychmüller, G. Viscardi and M. Grätzel, RSC Adv., 2, 2748 (2012); https://doi.org/10.1039/c2ra20192e.
Y. Li, H. Sun, N. Wang, W. Fang and Z. Li, Solid State Sci., 37, 18 (2014); https://doi.org/10.1016/j.solidstatesciences.2014.08.003.
A. Yourdkhani and G. Caruntu, J. Phys. Chem. C, 115, 14797 (2011); https://doi.org/10.1021/jp202127t.
M. Yashima, K. Omoto, J. Chen, H. Kato and X. Xing, Chem. Mater., 23, 3135 (2011); https://doi.org/10.1021/cm201184y.
P. Hu, J. Chen, J. Deng and X. Xing, J. Am. Chem. Soc., 132, 1925 (2010); https://doi.org/10.1021/ja908014u.
M. Park, S. Hong, J. Kim, Y. Kim, S. Buhlmann, Y.K. Kim and K. No, Appl. Phys. Lett., 94, 092901 (2009); https://doi.org/10.1063/1.3081120.
D. Arney, T. Watkins and P.A. Maggard, J. Am. Ceram. Soc., 94, 1483 (2011); https://doi.org/10.1111/j.1551-2916.2010.04262.x.
R. Li, Y. Zhao and C. Li, Faraday Discuss., 198, 463 (2017); https://doi.org/10.1039/C6FD00199H.
A. Kakekhani and S. Ismail-Beigi, J. Mater. Chem. A Mater. Energy Sustain., 4, 5235 (2016); https://doi.org/10.1039/C6TA00513F.
C.W. Ahn, P.H. Borse, J.H. Kim, J.Y. Kim, J.S. Jang, C.-R. Cho, J.-H. Yoon, B. Lee, J.-S. Bae, H.G. Kim and J.S. Lee, Appl. Catal. B, 224, 804 (2018); https://doi.org/10.1016/j.apcatb.2017.11.002.
J.S. Jang, C.W. Ahn, S.S. Won, J.H. Kim, W. Choi, B.-S. Lee, J.-H. Yoon, H.G. Kim and J.S. Lee, J. Phys. Chem. C, 121, 15063 (2017); https://doi.org/10.1021/acs.jpcc.7b03081.
T.B. Hook, Joule, 2, 1 (2018); https://doi.org/10.1016/j.joule.2017.10.014.
K. Iwashina and A. Kudo, J. Am. Chem. Soc., 133, 13272 (2011); https://doi.org/10.1021/ja2050315.
G. Sreedhar, A. Sivanantham, S. Venkateshwaran, S.K. Panda and M. Eashwar, J. Mater. Chem. A Mater. Energy Sustain., 3, 13476 (2015); https://doi.org/10.1039/C5TA00304K.
F. Wang, Y. Liu, Z. Ma, H. Li, Z. Kang and M. Shen, New J. Chem., 37, 290 (2013); https://doi.org/10.1039/C2NJ40988G.
W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, and X. Wang, Nano Lett., 11, 7574 (2015); https://doi.org/10.1021/acs.nanolett.5b03988.