Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Concentration on Synthesis of Organic Passivated Cu2-xS Nanoparticles from N-Pyrrolidine Dithiocarbamate Molecular Precursor
Corresponding Author(s) : T. Xaba
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
The synthesis of copper sulfide nanocrystals from bis(N-pyrrolidinedithiocarbamato) Cu(II) single molecule precursors have been achieved. Fourier-transform infrared (FTIR) spectroscopy, elemental analysis and thermogravimetric analysis (TGA) were used to characterize the prepared complex. Nanomaterials were further confirmed by optical properties and X-ray diffraction (XRD) confirmed that the final TGA product was CuS. The absorption spectra of copper sulfide nanoparticles showed a parabolic curve which is a characteristic of CuS covellite structure. The formation of hexagonal CuS covellite phase was investigated by XRD pattern. The TEM images showed that nanoparticles capped with tri-n-octylphosphine oxide (TOPO) were better passivated than those capped with hexadecylamine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Singh, M.G.B. Drew, G. Kociok-Kohn, K.C. Molloy and N. Singh, Dalton Trans., 40, 623 (2011); https://doi.org/10.1039/C0DT00582G.
- S.T. Breviglieri, E.T.G. Cavalheiro and G.O. Chierice, Polyhedron, 15, 839 (1996); https://doi.org/10.1016/0277-5387(95)00330-5.
- M. Altaf, M. Monim-ul-Mehboob, A.A. Isab, V. Dhuna, G. Bhatia, K. Dhuna and S. Altuwaijri, New J. Chem., 39, 377 (2015); https://doi.org/10.1039/C4NJ00747F.
- A. Jayaraju, M.M. Ahamad, R.M. Rao and J. Sreeramulu, Der Pharma Chem., 4, 1191 (2012).
- D. Coucouvanis, in eds.: L.J. Lippard, The Chemistry of the Dithioic acid and 1,1-dithiolate Complexes, 1968-1977, Progress in Inorganic Chemistry, John Wiley & Sons, Inc., vol. 26, pp. 301-469 (1979).
- M.D. Regulacio, N. Tomson and S.L. Stoll, Chem. Mater., 17, 3114 (2005); https://doi.org/10.1021/cm0478071.
- G. Hogarth, Mini Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095.
- P.A. Ajibade and J. Osuntokun, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/782526.
- R. Marx Nirmal, K. Pandian and K. Sivakumar, Appl. Surf. Sci., 257, 2745 (2011); https://doi.org/10.1016/j.apsusc.2010.10.055.
- K. Mnqiwu, T. Xaba, M.J. Moloto, P.K. Mubiayi, P. Nyamukamba and S.B. Sibokoza, Mater. Lett., 199, 28 (2017); https://doi.org/10.1016/j.matlet.2017.04.027.
- S.M. Mamba, A.K. Mishra, B.B. Mamba, P.B. Njobeh, M.F. Dutton and E. Fosso-kankeu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 579 (2010); https://doi.org/10.1016/j.saa.2010.06.002.
- G. Faraglia, S. Sitran and D. Montagner, Inorg. Chim. Acta, 358, 971 (2005); https://doi.org/10.1016/j.ica.2004.09.063.
- M.R. Kim, H.A. Hafez, X. Chai, L.V. Besteiro, L. Tan, T. Ozaki, A.O. Govorov, R. Izquierdo and D. Ma, Nanoscale, 8, 12946 (2016); https://doi.org/10.1039/C6NR03426H.
- L. Chen, M. Sakamoto, R. Sato and T. Teranishi, Faraday Discuss., 181, 355 (2015); https://doi.org/10.1039/C4FD00239C.
- J.M. Luther, P.K. Jain, T. Ewers and A.P. Alivisatos, Nat. Mater., 10, 361 (2011); https://doi.org/10.1038/nmat3004.
- J.A. Faucheaux, A.L.D. Stanton and P.K. Jain, J. Phys. Chem. Lett., 5, 976 (2014); https://doi.org/10.1021/jz500037k.
- E.J.H. Lee, C. Ribeiro, E. Longo and E.R. Leite, J. Phys. Chem. B, 109, 20842 (2005); https://doi.org/10.1021/jp0532115.
References
B. Singh, M.G.B. Drew, G. Kociok-Kohn, K.C. Molloy and N. Singh, Dalton Trans., 40, 623 (2011); https://doi.org/10.1039/C0DT00582G.
S.T. Breviglieri, E.T.G. Cavalheiro and G.O. Chierice, Polyhedron, 15, 839 (1996); https://doi.org/10.1016/0277-5387(95)00330-5.
M. Altaf, M. Monim-ul-Mehboob, A.A. Isab, V. Dhuna, G. Bhatia, K. Dhuna and S. Altuwaijri, New J. Chem., 39, 377 (2015); https://doi.org/10.1039/C4NJ00747F.
A. Jayaraju, M.M. Ahamad, R.M. Rao and J. Sreeramulu, Der Pharma Chem., 4, 1191 (2012).
D. Coucouvanis, in eds.: L.J. Lippard, The Chemistry of the Dithioic acid and 1,1-dithiolate Complexes, 1968-1977, Progress in Inorganic Chemistry, John Wiley & Sons, Inc., vol. 26, pp. 301-469 (1979).
M.D. Regulacio, N. Tomson and S.L. Stoll, Chem. Mater., 17, 3114 (2005); https://doi.org/10.1021/cm0478071.
G. Hogarth, Mini Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095.
P.A. Ajibade and J. Osuntokun, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/782526.
R. Marx Nirmal, K. Pandian and K. Sivakumar, Appl. Surf. Sci., 257, 2745 (2011); https://doi.org/10.1016/j.apsusc.2010.10.055.
K. Mnqiwu, T. Xaba, M.J. Moloto, P.K. Mubiayi, P. Nyamukamba and S.B. Sibokoza, Mater. Lett., 199, 28 (2017); https://doi.org/10.1016/j.matlet.2017.04.027.
S.M. Mamba, A.K. Mishra, B.B. Mamba, P.B. Njobeh, M.F. Dutton and E. Fosso-kankeu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 77, 579 (2010); https://doi.org/10.1016/j.saa.2010.06.002.
G. Faraglia, S. Sitran and D. Montagner, Inorg. Chim. Acta, 358, 971 (2005); https://doi.org/10.1016/j.ica.2004.09.063.
M.R. Kim, H.A. Hafez, X. Chai, L.V. Besteiro, L. Tan, T. Ozaki, A.O. Govorov, R. Izquierdo and D. Ma, Nanoscale, 8, 12946 (2016); https://doi.org/10.1039/C6NR03426H.
L. Chen, M. Sakamoto, R. Sato and T. Teranishi, Faraday Discuss., 181, 355 (2015); https://doi.org/10.1039/C4FD00239C.
J.M. Luther, P.K. Jain, T. Ewers and A.P. Alivisatos, Nat. Mater., 10, 361 (2011); https://doi.org/10.1038/nmat3004.
J.A. Faucheaux, A.L.D. Stanton and P.K. Jain, J. Phys. Chem. Lett., 5, 976 (2014); https://doi.org/10.1021/jz500037k.
E.J.H. Lee, C. Ribeiro, E. Longo and E.R. Leite, J. Phys. Chem. B, 109, 20842 (2005); https://doi.org/10.1021/jp0532115.