Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Oxidative Stability of Lubricants Blended with p-Substituted Phenolic Antioxidants
Corresponding Author(s) : K.T. Sutar
Asian Journal of Chemistry,
Vol. 30 No. 9 (2018): Vol 30 Issue 9
Abstract
Hindered phenolic antioxidants with different substitutions at para-positions are evaluated for their oxidation inhibition activity in mineral oil lubricants. Additives are blended in API Group-II base oil and subjected to bulk oil oxidation test under the conditions of the IP-48 test method. The unoxidized (fresh) and oxidized oils tested for presence and concentration of oxidation products by determining the change in acid value, increase in kinematic viscosity and concentration of oxidation products by FT-IR spectroscopy in the oil to evaluate oxidation severity. Based on the results, it seems that lighter para-substituted additives are incapable of protecting the oxidation of oil in the presence of oxygen and high temperature. It was observed that the inhibition activity of additives greatly increases due to the presence of para-substituted electron donating groups. The electron donating groups coupled with thioether linkage further raises the inhibition activity which is probably because of peroxide decomposing activity along with radical trapping.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Brown and A. Fish, Proc. R Soc. A Math Phys. Eng. Sci., 308, 547 (1969); https://doi.org/10.1098/rspa.1969.0025.
- S. Nallusamy and J. Logeshwaran, Rasayan J. Chem., 10, 1050 (2017); https://doi.org/10.7324/RJC.2017.1031861.
- L. Valgimigli and D.A. Pratt, Encyclopedia of Radicals in Chemistry, Biology and Materials. John Wiley & Sons Ltd., pp. 1623-1677 (2012).
- J.R. Shelton, J. Appl. Polym. Sci., 2, 345 (1959); https://doi.org/10.1002/app.1959.070020616.
- T. Yoshida and J. Igarashi, Tribol. Trans., 34, 51 (1991); https://doi.org/10.1080/10402009108982008.
- D.G. Lin and E.V. Vorobieva, J. Appl. Polym. Sci., 98, 401 (2005); https://doi.org/10.1002/app.21063.
- V.B. Luzhkov, Chem. Phys., 314, 211 (2005); https://doi.org/10.1016/j.chemphys.2005.03.001.
- A.L. Dawidowicz and M. Olszowy, Talanta, 97, 312 (2012); https://doi.org/10.1016/j.talanta.2012.04.036.
- E. Marinova, L. Georgiev, I. Totseva, K. Seizova and T. Milkova, Czech J. Food Sci., 31, 5 (2013); https://doi.org/10.17221/280/2011-CJFS.
- E.A. Haidasz, R. Shah and D.A. Pratt, J. Am. Chem. Soc., 136, 16643 (2014); https://doi.org/10.1021/ja509391u.
- K.U. Ingold and D.A. Pratt, Chem. Rev., 114, 9022 (2014); https://doi.org/10.1021/cr500226n.
- J. Dong and C.A. Migdal, Lubricant Additives: Chemistry and Applications, CRC Press, edn 2, pp. 3-50 (2009).
- M.C. Foti, J. Pharm. Pharmacol., 59, 1673 (2007); https://doi.org/10.1211/jpp.59.12.0010.
- M.C. Foti, R. Amorati, G.F. Pedulli, C. Daquino, D.A. Pratt and K.U. Ingold, J. Org. Chem., 75, 4434 (2010); https://doi.org/10.1021/jo100491a.
- R.W. Dornte, Ind. Eng. Chem., 28, 26 (1936); https://doi.org/10.1021/ie50313a007.
- M.R. Fenske, C.E. Stevenson, N.D. Lawson, G. Herbolsheimer and E.F. Koch, Ind. Eng. Chem., 33, 516 (1941); https://doi.org/10.1021/ie50376a017.
- G.H.V. Fuchs and H. Diamond, Ind. Eng. Chem., 34, 927 (1942); https://doi.org/10.1021/ie50392a007.
- IP 48: Determination of Oxidation Characteristics of Lubricating Oil, Energy Institute, Londan, UK (2012).
- G.W. Burton, T. Doba, E.J. Gabe, L. Hughes, F.L. Lee, L. Prasad and K.U. Ingold, J. Am. Chem. Soc., 107, 7053 (1985); https://doi.org/10.1021/ja00310a049.
- F. Natella, M. Nardini, M. Di Felice and C. Scaccini, J. Agric. Food Chem., 47, 1453 (1999); https://doi.org/10.1021/jf980737w.
- W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5.
- K.E. Heim, A.R. Tagliaferro and D.J. Bobilya, J. Nutr. Biochem., 13, 572 (2002); https://doi.org/10.1016/S0955-2863(02)00208-5.
- J.C. Cheng, F. Dai, B. Zhou, L. Yang and Z.-L. Liu, Food Chem., 104, 132 (2007); https://doi.org/10.1016/j.foodchem.2006.11.012.
- E. Földes and J. Lohmeijer, Polym. Degrad. Stab., 66, 31 (1999); https://doi.org/10.1016/S0141-3910(99)00049-X.
- T. Kajiyama and Y. Ohkatsu, Polym. Degrad. Stab., 71, 445 (2001); https://doi.org/10.1016/S0141-3910(00)00196-8.
- I. Vulic, G. Vitarelli and J.M. Zenner, Polym. Degrad. Stab., 78, 27 (2002); https://doi.org/10.1016/S0141-3910(02)00115-5.
- J.S. Wright, E.R. Johnson and G.A. DiLabio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u.
- K.T. Sutar and P.U. Singare, Rasayan J. Chem., 11, 465 (2018); https://doi.org/10.7324/RJC.2018.1122052.
- ASTMD445-15a, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), ASTM International, West Conshohocken, PA (2015).
- ASTM D664-11a, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, ASTM International, West Conshohocken, PA (2011).
- M.R. Silverstein, X. Webster and K.J.D. Francis. Spectrometric Identification of Organic Compounds, Wiley, edn 7 (2005).
- ASTM E2412-10, Standard Practice for Condition Monitoring of Used Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry, ASTM International, West Conshohocken, PA (2010).
- S. Ivanov and Y. Kateva, React. Kinet. Catal. Lett., 6, 243 (1977); https://doi.org/10.1007/BF02084205.
- J.D. Holdsworth, G. Scott and D. Williams, J. Chem. Soc., 4692 (1964); https://doi.org/10.1039/jr9640004692.
- G.S. Hammond, C.E. Boozer, C.E. Hamilton and J.N. Sen, J. Am. Chem. Soc., 77, 3238 (1955); https://doi.org/10.1021/ja01617a027.
- G.M. Coppinger, J. Am. Chem. Soc., 86, 4385 (1964); https://doi.org/10.1021/ja01074a032.
References
D.M. Brown and A. Fish, Proc. R Soc. A Math Phys. Eng. Sci., 308, 547 (1969); https://doi.org/10.1098/rspa.1969.0025.
S. Nallusamy and J. Logeshwaran, Rasayan J. Chem., 10, 1050 (2017); https://doi.org/10.7324/RJC.2017.1031861.
L. Valgimigli and D.A. Pratt, Encyclopedia of Radicals in Chemistry, Biology and Materials. John Wiley & Sons Ltd., pp. 1623-1677 (2012).
J.R. Shelton, J. Appl. Polym. Sci., 2, 345 (1959); https://doi.org/10.1002/app.1959.070020616.
T. Yoshida and J. Igarashi, Tribol. Trans., 34, 51 (1991); https://doi.org/10.1080/10402009108982008.
D.G. Lin and E.V. Vorobieva, J. Appl. Polym. Sci., 98, 401 (2005); https://doi.org/10.1002/app.21063.
V.B. Luzhkov, Chem. Phys., 314, 211 (2005); https://doi.org/10.1016/j.chemphys.2005.03.001.
A.L. Dawidowicz and M. Olszowy, Talanta, 97, 312 (2012); https://doi.org/10.1016/j.talanta.2012.04.036.
E. Marinova, L. Georgiev, I. Totseva, K. Seizova and T. Milkova, Czech J. Food Sci., 31, 5 (2013); https://doi.org/10.17221/280/2011-CJFS.
E.A. Haidasz, R. Shah and D.A. Pratt, J. Am. Chem. Soc., 136, 16643 (2014); https://doi.org/10.1021/ja509391u.
K.U. Ingold and D.A. Pratt, Chem. Rev., 114, 9022 (2014); https://doi.org/10.1021/cr500226n.
J. Dong and C.A. Migdal, Lubricant Additives: Chemistry and Applications, CRC Press, edn 2, pp. 3-50 (2009).
M.C. Foti, J. Pharm. Pharmacol., 59, 1673 (2007); https://doi.org/10.1211/jpp.59.12.0010.
M.C. Foti, R. Amorati, G.F. Pedulli, C. Daquino, D.A. Pratt and K.U. Ingold, J. Org. Chem., 75, 4434 (2010); https://doi.org/10.1021/jo100491a.
R.W. Dornte, Ind. Eng. Chem., 28, 26 (1936); https://doi.org/10.1021/ie50313a007.
M.R. Fenske, C.E. Stevenson, N.D. Lawson, G. Herbolsheimer and E.F. Koch, Ind. Eng. Chem., 33, 516 (1941); https://doi.org/10.1021/ie50376a017.
G.H.V. Fuchs and H. Diamond, Ind. Eng. Chem., 34, 927 (1942); https://doi.org/10.1021/ie50392a007.
IP 48: Determination of Oxidation Characteristics of Lubricating Oil, Energy Institute, Londan, UK (2012).
G.W. Burton, T. Doba, E.J. Gabe, L. Hughes, F.L. Lee, L. Prasad and K.U. Ingold, J. Am. Chem. Soc., 107, 7053 (1985); https://doi.org/10.1021/ja00310a049.
F. Natella, M. Nardini, M. Di Felice and C. Scaccini, J. Agric. Food Chem., 47, 1453 (1999); https://doi.org/10.1021/jf980737w.
W. Brand-Williams, M.E. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); https://doi.org/10.1016/S0023-6438(95)80008-5.
K.E. Heim, A.R. Tagliaferro and D.J. Bobilya, J. Nutr. Biochem., 13, 572 (2002); https://doi.org/10.1016/S0955-2863(02)00208-5.
J.C. Cheng, F. Dai, B. Zhou, L. Yang and Z.-L. Liu, Food Chem., 104, 132 (2007); https://doi.org/10.1016/j.foodchem.2006.11.012.
E. Földes and J. Lohmeijer, Polym. Degrad. Stab., 66, 31 (1999); https://doi.org/10.1016/S0141-3910(99)00049-X.
T. Kajiyama and Y. Ohkatsu, Polym. Degrad. Stab., 71, 445 (2001); https://doi.org/10.1016/S0141-3910(00)00196-8.
I. Vulic, G. Vitarelli and J.M. Zenner, Polym. Degrad. Stab., 78, 27 (2002); https://doi.org/10.1016/S0141-3910(02)00115-5.
J.S. Wright, E.R. Johnson and G.A. DiLabio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u.
K.T. Sutar and P.U. Singare, Rasayan J. Chem., 11, 465 (2018); https://doi.org/10.7324/RJC.2018.1122052.
ASTMD445-15a, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), ASTM International, West Conshohocken, PA (2015).
ASTM D664-11a, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, ASTM International, West Conshohocken, PA (2011).
M.R. Silverstein, X. Webster and K.J.D. Francis. Spectrometric Identification of Organic Compounds, Wiley, edn 7 (2005).
ASTM E2412-10, Standard Practice for Condition Monitoring of Used Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry, ASTM International, West Conshohocken, PA (2010).
S. Ivanov and Y. Kateva, React. Kinet. Catal. Lett., 6, 243 (1977); https://doi.org/10.1007/BF02084205.
J.D. Holdsworth, G. Scott and D. Williams, J. Chem. Soc., 4692 (1964); https://doi.org/10.1039/jr9640004692.
G.S. Hammond, C.E. Boozer, C.E. Hamilton and J.N. Sen, J. Am. Chem. Soc., 77, 3238 (1955); https://doi.org/10.1021/ja01617a027.
G.M. Coppinger, J. Am. Chem. Soc., 86, 4385 (1964); https://doi.org/10.1021/ja01074a032.