Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimycobacterial Activity of Phenanthrenequinone Thiosemicarbazones and their Ruthenium and Zinc Complexes
Corresponding Author(s) : Ashok K. Singh
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
The substituted phenanthrenequinone thiosemicarbazones (HL1, HL2 and HL3), and their metal complexes (M = Ru(II) or Zn(II); SM1, SM2, SM3 and SM4) were synthesized and characterized by FT-IR, 1H & 13C NMR and ESI-MS. The spectral data IR, 1H & 13C NMR and ESI-MS indicates two tridentate ligands coordinating in the form of an octahedral geometry. The gas phase geometry of all the zinc(II) and ruthenium(II) complexes was carried by using density functional theory (DFT). The antimycobacterial susceptibility testing at 100 μM of the complexes using resazurin microtiter plate assay resulted in growth inhibition. Complexes SM2, SM3 and SM4 showed good antimycobacterial activity at 100 μM concentration by using rifampicin as inhibition control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Thakur, H. Mikkelsen and G. Jungersen, J. Immunol. Res., 2019,1356540 (2019);https://doi.org/10.1155/2019/1356540
- S.G. Kurz, J.J. Furin and C.M. Bark, Infect. Dis. Clin. North Am., 30, 509 (2016); https://doi.org/10.1016/j.idc.2016.02.010
- M.T. Heinrichs, R.J. May, F. Heider, T. Reimers, S.K.B. Sy, C.A. Peloquin and H. Derendorf, Int. J. Mycobacteriol., 7, 156 (2018); https://doi.org/10.4103/ijmy.ijmy_33_18
- J. van den Boogaard, G.S. Kibiki, E.R. Kisanga, M.J. Boeree and R.E. Aarnoutse, Antimicrob. Agents Chemother., 53, 849 (2009); https://doi.org/10.1128/AAC.00749-08
- T. Törün, G. Güngör, I. Ozmen, Y. Bölükbasi, E. Maden, B. Biçakçi, G. Ataç, T. Sevim and K. Tahaoglu, Int. J. Tuberc. Lung Dis., 9, 1373 (2005).
- L.Z. Montelongo-Peralta, A. León-Buitimea, J.P. Palma-Nicolás, J. Gonzalez-Christen and J.R. Morones-Ramírez, Sci. Rep., 9, 5471 (2019); https://doi.org/10.1038/s41598-019-42049-5
- Y. Yoshikawa and H. Yasui, Curr. Top. Med. Chem., 12, 210 (2012); https://doi.org/10.2174/156802612799078874
- C. Mari, V. Pierroz, S. Ferrari and G. Gasser, Chem. Sci., 6, 2660 (2015); https://doi.org/10.1039/C4SC03759F
- J.L. Bolton and T. Dunlap, Chem. Res. Toxicol., 30, 13 (2017); https://doi.org/10.1021/acs.chemrestox.6b00256
- N. El-Najjar, H. Gali-Muhtasib, R.A. Ketola, P. Vuorela, A. Urtti and H. Vuorela, Phytochem. Rev., 10, 353 (2011) https://doi.org/10.1007/s11101-011-9209-1
- Z. Afrasiabi, E. Sinn, S. Padhye, S. Dutta, S. Padhye, C. Newton, C.E. Anson and A.K. Powell, J. Inorg. Biochem., 95, 306 (2003); https://doi.org/10.1016/S0162-0134(03)00131-4
- P. Anitha, P. Viswanathamurthi, D. Kesavan and R.J. Butcher, J. Coord. Chem., 68, 321 (2015); https://doi.org/10.1080/00958972.2014.977269
- S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta and N. Rath, Inorg. Chem., 44, 1154 (2005); https://doi.org/10.1021/ic048214v
- P. Anitha, N. Chitrapriya, Y.J. Jang and P. Viswanathamurthi, J. Photochem. Photobiol. B: Biol., 129, 17 (2013); https://doi.org/10.1016/j.jphotobiol.2013.09.005
- A.E. Stacy, D. Palanimuthu, P.V. Bernhardt, D.S. Kalinowski, P.J. Jansson and D.R. Richardson, J. Med. Chem., 59, 4965 (2016); https://doi.org/10.1021/acs.jmedchem.6b00238
- S.S. Karki, S. Thota, S.Y. Darj, J. Balzarini and E. De Clercq, Bioorg. Med. Chem., 15, 6632 (2007); https://doi.org/10.1016/j.bmc.2007.08.014
- J.-C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings and F. Portaels, Antimicrob. Agents Chemother., 46, 2720 (2002); https://doi.org/10.1128/AAC.46.8.2720-2722.2002
- X. Liao, J. Lu, P. Ying, P. Zhao, Y. Bai, W. Li and M. Liu, J. Biol. Inorg. Chem., 18, 975 (2013); https://doi.org/10.1007/s00775-013-1046-9
- B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
- A.K. Singh, G. Saxena, L. Kumari, S.K. Singh, M. Faheem, A. Kumar and R. Sharma, Lett. Appl. NanoBioSci., 10, 1760 (2021); https://doi.org/10.33263/LIANBS101.17601791
- C. He, S. Yu, S. Ma and F. Cheng, Transition Met. Chem., 44, 515 (2019); https://doi.org/10.1007/s11243-019-00309-3
- P. Miotto, Y. Zhang, D.M. Cirillo and W.C. Yam, Respirology, 23, 1098 (2018); https://doi.org/10.1111/resp.13393
- S. Xu, J.E.T. Smith and J.M. Weber, J. Chem. Phys., 145, 024304 (2016); https://doi.org/10.1063/1.4955262
- T.R. Arun and N. Raman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 127, 292 (2014); https://doi.org/10.1016/j.saa.2014.02.074
- O.G. Idemudia and E.C. Hosten, Crystals, 6, 127 (2016); https://doi.org/10.3390/cryst6100127
- E. Montoro, D. Lemus, M. Echemendia, J. Antimicrob. Chemother., 55, 500 (2005); https://doi.org/10.1093/jac/dki023
References
A. Thakur, H. Mikkelsen and G. Jungersen, J. Immunol. Res., 2019,1356540 (2019);https://doi.org/10.1155/2019/1356540
S.G. Kurz, J.J. Furin and C.M. Bark, Infect. Dis. Clin. North Am., 30, 509 (2016); https://doi.org/10.1016/j.idc.2016.02.010
M.T. Heinrichs, R.J. May, F. Heider, T. Reimers, S.K.B. Sy, C.A. Peloquin and H. Derendorf, Int. J. Mycobacteriol., 7, 156 (2018); https://doi.org/10.4103/ijmy.ijmy_33_18
J. van den Boogaard, G.S. Kibiki, E.R. Kisanga, M.J. Boeree and R.E. Aarnoutse, Antimicrob. Agents Chemother., 53, 849 (2009); https://doi.org/10.1128/AAC.00749-08
T. Törün, G. Güngör, I. Ozmen, Y. Bölükbasi, E. Maden, B. Biçakçi, G. Ataç, T. Sevim and K. Tahaoglu, Int. J. Tuberc. Lung Dis., 9, 1373 (2005).
L.Z. Montelongo-Peralta, A. León-Buitimea, J.P. Palma-Nicolás, J. Gonzalez-Christen and J.R. Morones-Ramírez, Sci. Rep., 9, 5471 (2019); https://doi.org/10.1038/s41598-019-42049-5
Y. Yoshikawa and H. Yasui, Curr. Top. Med. Chem., 12, 210 (2012); https://doi.org/10.2174/156802612799078874
C. Mari, V. Pierroz, S. Ferrari and G. Gasser, Chem. Sci., 6, 2660 (2015); https://doi.org/10.1039/C4SC03759F
J.L. Bolton and T. Dunlap, Chem. Res. Toxicol., 30, 13 (2017); https://doi.org/10.1021/acs.chemrestox.6b00256
N. El-Najjar, H. Gali-Muhtasib, R.A. Ketola, P. Vuorela, A. Urtti and H. Vuorela, Phytochem. Rev., 10, 353 (2011) https://doi.org/10.1007/s11101-011-9209-1
Z. Afrasiabi, E. Sinn, S. Padhye, S. Dutta, S. Padhye, C. Newton, C.E. Anson and A.K. Powell, J. Inorg. Biochem., 95, 306 (2003); https://doi.org/10.1016/S0162-0134(03)00131-4
P. Anitha, P. Viswanathamurthi, D. Kesavan and R.J. Butcher, J. Coord. Chem., 68, 321 (2015); https://doi.org/10.1080/00958972.2014.977269
S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta and N. Rath, Inorg. Chem., 44, 1154 (2005); https://doi.org/10.1021/ic048214v
P. Anitha, N. Chitrapriya, Y.J. Jang and P. Viswanathamurthi, J. Photochem. Photobiol. B: Biol., 129, 17 (2013); https://doi.org/10.1016/j.jphotobiol.2013.09.005
A.E. Stacy, D. Palanimuthu, P.V. Bernhardt, D.S. Kalinowski, P.J. Jansson and D.R. Richardson, J. Med. Chem., 59, 4965 (2016); https://doi.org/10.1021/acs.jmedchem.6b00238
S.S. Karki, S. Thota, S.Y. Darj, J. Balzarini and E. De Clercq, Bioorg. Med. Chem., 15, 6632 (2007); https://doi.org/10.1016/j.bmc.2007.08.014
J.-C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings and F. Portaels, Antimicrob. Agents Chemother., 46, 2720 (2002); https://doi.org/10.1128/AAC.46.8.2720-2722.2002
X. Liao, J. Lu, P. Ying, P. Zhao, Y. Bai, W. Li and M. Liu, J. Biol. Inorg. Chem., 18, 975 (2013); https://doi.org/10.1007/s00775-013-1046-9
B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 5, 143 (1970); https://doi.org/10.1016/S0010-8545(00)80135-6
A.K. Singh, G. Saxena, L. Kumari, S.K. Singh, M. Faheem, A. Kumar and R. Sharma, Lett. Appl. NanoBioSci., 10, 1760 (2021); https://doi.org/10.33263/LIANBS101.17601791
C. He, S. Yu, S. Ma and F. Cheng, Transition Met. Chem., 44, 515 (2019); https://doi.org/10.1007/s11243-019-00309-3
P. Miotto, Y. Zhang, D.M. Cirillo and W.C. Yam, Respirology, 23, 1098 (2018); https://doi.org/10.1111/resp.13393
S. Xu, J.E.T. Smith and J.M. Weber, J. Chem. Phys., 145, 024304 (2016); https://doi.org/10.1063/1.4955262
T.R. Arun and N. Raman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 127, 292 (2014); https://doi.org/10.1016/j.saa.2014.02.074
O.G. Idemudia and E.C. Hosten, Crystals, 6, 127 (2016); https://doi.org/10.3390/cryst6100127
E. Montoro, D. Lemus, M. Echemendia, J. Antimicrob. Chemother., 55, 500 (2005); https://doi.org/10.1093/jac/dki023