Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic and Mechanistic Studies of Acidic Hydrolysis of Goniothalamin
Corresponding Author(s) : K. Awang
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
The acidic hydrolysis of goniothalamin was studied on the spectrophotometric kinetic study at different concentration of hydrochloric acid and temperature to determine the stability of the compound. Stability tests were performed using UV-VIS detection. This is a two-step reaction that involves formation of intermediate product. Rate constant of reactant forming intermediate product obeyed pseudo-first-order kinetic, while the second step to form final product is independent on the concentration of HCl. The structure of final products was identified by NMR and MS. The acidic hydrolysis pathway was proposed to involve the opening of lactone ring, followed by dehydration and formation of a double bond.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Seyed, I. Jantan and S.N.A. Bukhari, BioMed Res. Int., 2014, 1 (2014); https://doi.org/10.1155/2014/536508
- C.C. Chiu, P.L. Liu, K.J. Huang, H.M. Wang, K.F. Chang, C.K. Chou, F.R. Chang, I.W. Chong, K. Fang, J.S. Chen, H.W. Chang and Y.C. Wu, J. Agric. Food Chem., 59, 4288 (2011); https://doi.org/10.1021/jf200566a
- J.Y. Wach, S. Guttinger, U. Kutay and K. Gademann, Bioorg. Med. Chem. Lett., 20, 2843 (2010); https://doi.org/10.1016/j.bmcl.2010.03.049
- N.V. Bihud, N.E. Rasol, S. Imran, K. Awang, F.B. Ahmad, C.-W. Mai, C.-O. Leong, G.A. Cordell and N.H. Ismail, J. Nat. Prod., 82, 2430 (2019); https://doi.org/10.1021/acs.jnatprod.8b01067
- N.E. Rasol, F.B. Ahmad, C.-W. Mai, N.V. Bihud, F. Abdullah, K. Awang and N.H. Ismail, Nat. Prod. Commun., 13, 1575 (2018); https://doi.org/10.1177/1934578X1801301203
- M.A. Mosaddik and M.E. Haque, Phytother. Res., 17, 1155 (2003); https://doi.org/10.1002/ptr.1303
- C.V.B. Martins, M.A. de Resende, D.L. da Silva, T.F.F. Magalhães, L.V. Modolo, R.A. Pilli and A. de Fátima, J. Appl. Microbiol., 107, 1279 (2009); https://doi.org/10.1111/j.1365-2672.2009.04307.x
- K.E. Kabir, A.R. Khan and M.A. Mosaddik, J. Appl. Entomol., 127, 112 (2003); https://doi.org/10.1046/j.1439-0418.2003.00716.x
- N.H. Lajis, M. Niyaz Khan and H.M. Noor, J. Pharm. Sci., 84, 126 (1995); https://doi.org/10.1002/jps.2600840128
- Y.-X. Guo, Z.-L. Xiu, D.-J. Zhang, H. Wang, L.-X. Wang and H.-B. Xiao, J. Pharm. Biomed., 43, 1249 (2007); https://doi.org/10.1016/j.jpba.2006.10.025
- A. Zahari, A. Ablat, N. Omer, M.A. Nafiah, Y. Sivasothy, J. Mohamad, M.N. Khan and K. Awang, Sci. Rep., 6, 21517 (2016); https://doi.org/10.1038/srep21517
- E. Denisov, O. Sarkisov and G. Likhtenshtein, Chemical Kinetics: Fundamentals and Recent Developments, Elsevier Science (2003).
- R.P.T. Kim, V. Bihud, K.B. Mohamad, K.H. Leong, J.B. Mohamad, F.B. Ahmad, H. Hazni, N. Kasim, S.N. Halim and K. Awang, Molecules, 18, 128 (2012); https://doi.org/10.3390/molecules18010128
- A. de Fatima, L.K. Kohn, M.A. Antonio, J.E. de Carvalho and R.A. Pilli, Bioorg. Med. Chem., 13, 2927 (2005); https://doi.org/10.1016/j.bmc.2005.02.007
References
M.A. Seyed, I. Jantan and S.N.A. Bukhari, BioMed Res. Int., 2014, 1 (2014); https://doi.org/10.1155/2014/536508
C.C. Chiu, P.L. Liu, K.J. Huang, H.M. Wang, K.F. Chang, C.K. Chou, F.R. Chang, I.W. Chong, K. Fang, J.S. Chen, H.W. Chang and Y.C. Wu, J. Agric. Food Chem., 59, 4288 (2011); https://doi.org/10.1021/jf200566a
J.Y. Wach, S. Guttinger, U. Kutay and K. Gademann, Bioorg. Med. Chem. Lett., 20, 2843 (2010); https://doi.org/10.1016/j.bmcl.2010.03.049
N.V. Bihud, N.E. Rasol, S. Imran, K. Awang, F.B. Ahmad, C.-W. Mai, C.-O. Leong, G.A. Cordell and N.H. Ismail, J. Nat. Prod., 82, 2430 (2019); https://doi.org/10.1021/acs.jnatprod.8b01067
N.E. Rasol, F.B. Ahmad, C.-W. Mai, N.V. Bihud, F. Abdullah, K. Awang and N.H. Ismail, Nat. Prod. Commun., 13, 1575 (2018); https://doi.org/10.1177/1934578X1801301203
M.A. Mosaddik and M.E. Haque, Phytother. Res., 17, 1155 (2003); https://doi.org/10.1002/ptr.1303
C.V.B. Martins, M.A. de Resende, D.L. da Silva, T.F.F. Magalhães, L.V. Modolo, R.A. Pilli and A. de Fátima, J. Appl. Microbiol., 107, 1279 (2009); https://doi.org/10.1111/j.1365-2672.2009.04307.x
K.E. Kabir, A.R. Khan and M.A. Mosaddik, J. Appl. Entomol., 127, 112 (2003); https://doi.org/10.1046/j.1439-0418.2003.00716.x
N.H. Lajis, M. Niyaz Khan and H.M. Noor, J. Pharm. Sci., 84, 126 (1995); https://doi.org/10.1002/jps.2600840128
Y.-X. Guo, Z.-L. Xiu, D.-J. Zhang, H. Wang, L.-X. Wang and H.-B. Xiao, J. Pharm. Biomed., 43, 1249 (2007); https://doi.org/10.1016/j.jpba.2006.10.025
A. Zahari, A. Ablat, N. Omer, M.A. Nafiah, Y. Sivasothy, J. Mohamad, M.N. Khan and K. Awang, Sci. Rep., 6, 21517 (2016); https://doi.org/10.1038/srep21517
E. Denisov, O. Sarkisov and G. Likhtenshtein, Chemical Kinetics: Fundamentals and Recent Developments, Elsevier Science (2003).
R.P.T. Kim, V. Bihud, K.B. Mohamad, K.H. Leong, J.B. Mohamad, F.B. Ahmad, H. Hazni, N. Kasim, S.N. Halim and K. Awang, Molecules, 18, 128 (2012); https://doi.org/10.3390/molecules18010128
A. de Fatima, L.K. Kohn, M.A. Antonio, J.E. de Carvalho and R.A. Pilli, Bioorg. Med. Chem., 13, 2927 (2005); https://doi.org/10.1016/j.bmc.2005.02.007