Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Thermo-Physical Properties of Heterocyclic Compounds with Aliphatic Alcohols at T = 303.15, 308.15 and 313.15 K
Corresponding Author(s) : D. Ubagaramary
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
The densities (ρ), speeds of sound (u), and viscosities (η) have been measured for ternary liquid mixtures of tetrahydrofuran in cyclohexanone with 1-hexanol and 1-octanol at 303.15-313.15 K over the entire range of mole fractions and at atmospheric pressure 0.1 MPa. These experimental data have been used to estimate the thermophysical properties of heterocyclic compounds with aliphatic alcohols at T = 303.15, 308.15 and 313.15 K. Preliminary data was used to assess the excess free volume, internal pressure and free energy of Gibbs, which were discussed in light of the molecular interaction surviving in the mixtures. Analysis of each of the two contributions, namely interaction, free volume VE showed that the contributions are positive for all systems. The variations of these parameters with the composition and the temperature were discussed with regard to the intermolecular interactions prevailing in these mixtures. These values also indicate the formation of a hydrogen bonding (C=O......OH) between the hydrogen atom of aliphatic alcohol of 1-hexanol/1-octanol and oxygen atom of heterocyclic compounds tetrahydrofuran in cyclohexanone in the ternary liquid mixtures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.K. Sharma, S. Solanki and S. Bhagour, J. Chem. Eng. Data, 59, 1852 (2014); https://doi.org/10.1021/je401098b
- Neeti, S.K. Jangra, J.S. Yadav, Dimple and V.K. Sharma, J. Mol. Liq., 163, 36 (2011); https://doi.org/10.1016/j.molliq.2011.07.008
- V. Pandiyan, S.L. Oswal, N.I. Malek and P. Vasantharani, Thermochim. Acta, 524, 140 (2011); https://doi.org/10.1016/j.tca.2011.07.005
- S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025
- O. Redlich and A.T. Kister, J. Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036
- I. Prigogine, The Molecular Theory of Solution, North Holland Publ. Co., Amsterdam (1957).
- D.J. Cram and G.S. Hammond, Organic Chemistry, McGraw Hill Book Co., NewYork, Eds. 2 (1964).
- A. Heintz, B. Schmittecker, D. Wagner and R.N. Lichtenthaler, J. Chem. Eng. Data, 31, 487 (1986); https://doi.org/10.1021/je00046a030
- A. Valtz, M. Teodorescu, I. Wichterle and D. Richon, Fluid Phase Equilib., 215, 129 (2004); https://doi.org/10.1016/S0378-3812(03)00364-9
- S. Villa, N. Riesco, F.J. Carmona, I. Garcia de la Fuente, J.A. Gonzalez and J.C. Cobos, Thermochim. Acta, 362, 169 (2000); https://doi.org/10.1016/S0040-6031(00)00575-X
- K. Noweck and W. Grafahrend, Fatty Alcohols: Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH (2006).
- Z. Wang, Ziegler Alcohol Synthesis (Ziegler Higher Alcohol Synthesis, Alfol Process, Ziegler-Alfol Process, Ziegler-Alfol Synthesis), In: Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc. (2010).
- W. Kauzmann and H. Eyring, J. Am. Chem. Soc., 62, 3113 (1940); https://doi.org/10.1021/ja01868a059
- H. Vogel and A. Weiss, Ber. Bunsenges. Phys. Chem., 86, 193 (1982); https://doi.org/10.1002/bbpc.19820860304
- A. Mariano and M. Postigo, Fluid Phase Equilib., 239, 146 (2006); https://doi.org/10.1016/j.fluid.2005.11.018
- P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/b208765k
- A. Pineiro, P. Brocos, A. Amigo, M. Pintos and R. Bravo, Chem. Phys. Liq., 38, 251 (2000); https://doi.org/10.1080/00319100008030275
- T.M. Reed Iii. and T.E. Taylor, J. Phys. Chem., 63, 58 (1959); https://doi.org/10.1021/j150571a016
- B. Sathyanarayana, B. Ranjithkumar, T.S. Jyostna and N. Satyanarayana, J. Chem. Thermodyn., 39, 16 (2007); https://doi.org/10.1016/j.jct.2006.06.009
- K. Liu and E. Kiran, Ind. Eng. Chem. Res., 46, 5453 (2007); https://doi.org/10.1021/ie070274w
- H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004
- S. Ottani, D. Vitalini, F. Comelli and C. Castellari, J. Chem. Eng. Data, 47, 1197 (2002); https://doi.org/10.1021/je020030c
- H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004
- F. Kermanpour and H.Z. Niakan, J. Chem. Thermodyn., 54, 10 (2012); https://doi.org/10.1016/j.jct.2012.02.036
- R.L. Gardas and S. Oswal, Thermochim. Acta, 479, 17 (2008); https://doi.org/10.1016/j.tca.2008.09.006
- R. Balaji, M.G. Sankar, M.C. Sekhar and M.C. Shekar, Karbala Int. J. Modern Sci., 2, 10 (2016); https://doi.org/10.1016/j.kijoms.2015.12.001
- D. Rahul, M.G. Sankar, T.S. Krishna and D. Ramachandran, Karbala Int. J. Modern Sci., 2, 78 (2016); https://doi.org/10.1016/j.kijoms.2016.02.001
- J.A. Barker and F. Smith, J. Chem. Phys., 22, 375 (1954); https://doi.org/10.1063/1.1740077
- G. Tomas, P. Garcia-Gimenez, S.T. Blanco, L. Velasco and S. Otin, J. Chem. Eng. Data, 53, 128 (2008); https://doi.org/10.1021/je700414c
- Neeti, S.K. Jangra, J.S. Yadav, Dimple and V.K. Sharma, Thermochim. Acta, 524, 92 (2011); https://doi.org/10.1016/j.tca.2011.06.020
- S. Akhtar, A.N.M. Omar Faruk and M.A. Saleh, Phys. Chem. Liq., 39, 383 (2001); https://doi.org/10.1080/00319100108031670
- P. Jeevanandham, S. Kumar and P. Periyasamy, J. Mol. Liq., 188, 203 (2013); https://doi.org/10.1016/j.molliq.2013.09.035
- J.A. Riddick and W.B. Bunger, Techniques of Chemistry, Wiley Intersxiences: New York (1986).
- A. Garcia-Abuin, D. Gomez-Diaz, M.D. La Rubia and J.M. Navaza, J. Chem. Eng. Data, 56, 646 (2011); https://doi.org/10.1021/je100967k
- M.I. Aralaguppi, C.V. Jadar and T.M. Aminabhavi, J. Chem. Eng. Data, 44, 441 (1999); https://doi.org/10.1021/je980218p
- B. Hawrylak, S.E. Burke and R. Palepu, J. Solution Chem., 29, 575 (2000); https://doi.org/10.1023/A:1005198230692
- F. Pouryousefi and R.O. Idem, Ind. Eng. Chem. Res., 47, 1268 (2008); https://doi.org/10.1021/ie0709786
- J. Han, J. Jin, D.A. Eimer and M.C. Melaaen, J. Chem. Eng. Data, 57, 1095 (2012); https://doi.org/10.1021/je2010038
- E. Vertesi, J. Chem. Eng. Data, 25, 387 (1980); https://doi.org/10.1021/je60087a005
- M. Chandra Sekhar, M.G. Sankar and A. Venkatesulu, J. Mol. Liq., 209, 428 (2015); https://doi.org/10.1016/j.molliq.2015.04.034
- R. Balaji, M. Gowri Sankar, A. Venkatesulu and M. Chandra Shekar, J. Mol. Liq., 230, 36 (2017); https://doi.org/10.1016/j.molliq.2016.12.109
- G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8
References
V.K. Sharma, S. Solanki and S. Bhagour, J. Chem. Eng. Data, 59, 1852 (2014); https://doi.org/10.1021/je401098b
Neeti, S.K. Jangra, J.S. Yadav, Dimple and V.K. Sharma, J. Mol. Liq., 163, 36 (2011); https://doi.org/10.1016/j.molliq.2011.07.008
V. Pandiyan, S.L. Oswal, N.I. Malek and P. Vasantharani, Thermochim. Acta, 524, 140 (2011); https://doi.org/10.1016/j.tca.2011.07.005
S. Kumar and P. Jeevanandham, J. Mol. Liq., 174, 34 (2012); https://doi.org/10.1016/j.molliq.2012.07.025
O. Redlich and A.T. Kister, J. Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036
I. Prigogine, The Molecular Theory of Solution, North Holland Publ. Co., Amsterdam (1957).
D.J. Cram and G.S. Hammond, Organic Chemistry, McGraw Hill Book Co., NewYork, Eds. 2 (1964).
A. Heintz, B. Schmittecker, D. Wagner and R.N. Lichtenthaler, J. Chem. Eng. Data, 31, 487 (1986); https://doi.org/10.1021/je00046a030
A. Valtz, M. Teodorescu, I. Wichterle and D. Richon, Fluid Phase Equilib., 215, 129 (2004); https://doi.org/10.1016/S0378-3812(03)00364-9
S. Villa, N. Riesco, F.J. Carmona, I. Garcia de la Fuente, J.A. Gonzalez and J.C. Cobos, Thermochim. Acta, 362, 169 (2000); https://doi.org/10.1016/S0040-6031(00)00575-X
K. Noweck and W. Grafahrend, Fatty Alcohols: Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH (2006).
Z. Wang, Ziegler Alcohol Synthesis (Ziegler Higher Alcohol Synthesis, Alfol Process, Ziegler-Alfol Process, Ziegler-Alfol Synthesis), In: Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc. (2010).
W. Kauzmann and H. Eyring, J. Am. Chem. Soc., 62, 3113 (1940); https://doi.org/10.1021/ja01868a059
H. Vogel and A. Weiss, Ber. Bunsenges. Phys. Chem., 86, 193 (1982); https://doi.org/10.1002/bbpc.19820860304
A. Mariano and M. Postigo, Fluid Phase Equilib., 239, 146 (2006); https://doi.org/10.1016/j.fluid.2005.11.018
P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/b208765k
A. Pineiro, P. Brocos, A. Amigo, M. Pintos and R. Bravo, Chem. Phys. Liq., 38, 251 (2000); https://doi.org/10.1080/00319100008030275
T.M. Reed Iii. and T.E. Taylor, J. Phys. Chem., 63, 58 (1959); https://doi.org/10.1021/j150571a016
B. Sathyanarayana, B. Ranjithkumar, T.S. Jyostna and N. Satyanarayana, J. Chem. Thermodyn., 39, 16 (2007); https://doi.org/10.1016/j.jct.2006.06.009
K. Liu and E. Kiran, Ind. Eng. Chem. Res., 46, 5453 (2007); https://doi.org/10.1021/ie070274w
H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004
S. Ottani, D. Vitalini, F. Comelli and C. Castellari, J. Chem. Eng. Data, 47, 1197 (2002); https://doi.org/10.1021/je020030c
H. Wang, W. Liu and J. Huang, J. Chem. Thermodyn., 36, 743 (2004); https://doi.org/10.1016/j.jct.2004.04.004
F. Kermanpour and H.Z. Niakan, J. Chem. Thermodyn., 54, 10 (2012); https://doi.org/10.1016/j.jct.2012.02.036
R.L. Gardas and S. Oswal, Thermochim. Acta, 479, 17 (2008); https://doi.org/10.1016/j.tca.2008.09.006
R. Balaji, M.G. Sankar, M.C. Sekhar and M.C. Shekar, Karbala Int. J. Modern Sci., 2, 10 (2016); https://doi.org/10.1016/j.kijoms.2015.12.001
D. Rahul, M.G. Sankar, T.S. Krishna and D. Ramachandran, Karbala Int. J. Modern Sci., 2, 78 (2016); https://doi.org/10.1016/j.kijoms.2016.02.001
J.A. Barker and F. Smith, J. Chem. Phys., 22, 375 (1954); https://doi.org/10.1063/1.1740077
G. Tomas, P. Garcia-Gimenez, S.T. Blanco, L. Velasco and S. Otin, J. Chem. Eng. Data, 53, 128 (2008); https://doi.org/10.1021/je700414c
Neeti, S.K. Jangra, J.S. Yadav, Dimple and V.K. Sharma, Thermochim. Acta, 524, 92 (2011); https://doi.org/10.1016/j.tca.2011.06.020
S. Akhtar, A.N.M. Omar Faruk and M.A. Saleh, Phys. Chem. Liq., 39, 383 (2001); https://doi.org/10.1080/00319100108031670
P. Jeevanandham, S. Kumar and P. Periyasamy, J. Mol. Liq., 188, 203 (2013); https://doi.org/10.1016/j.molliq.2013.09.035
J.A. Riddick and W.B. Bunger, Techniques of Chemistry, Wiley Intersxiences: New York (1986).
A. Garcia-Abuin, D. Gomez-Diaz, M.D. La Rubia and J.M. Navaza, J. Chem. Eng. Data, 56, 646 (2011); https://doi.org/10.1021/je100967k
M.I. Aralaguppi, C.V. Jadar and T.M. Aminabhavi, J. Chem. Eng. Data, 44, 441 (1999); https://doi.org/10.1021/je980218p
B. Hawrylak, S.E. Burke and R. Palepu, J. Solution Chem., 29, 575 (2000); https://doi.org/10.1023/A:1005198230692
F. Pouryousefi and R.O. Idem, Ind. Eng. Chem. Res., 47, 1268 (2008); https://doi.org/10.1021/ie0709786
J. Han, J. Jin, D.A. Eimer and M.C. Melaaen, J. Chem. Eng. Data, 57, 1095 (2012); https://doi.org/10.1021/je2010038
E. Vertesi, J. Chem. Eng. Data, 25, 387 (1980); https://doi.org/10.1021/je60087a005
M. Chandra Sekhar, M.G. Sankar and A. Venkatesulu, J. Mol. Liq., 209, 428 (2015); https://doi.org/10.1016/j.molliq.2015.04.034
R. Balaji, M. Gowri Sankar, A. Venkatesulu and M. Chandra Shekar, J. Mol. Liq., 230, 36 (2017); https://doi.org/10.1016/j.molliq.2016.12.109
G.C. Benson and O. Kiyohara, J. Chem. Thermodyn., 11, 1061 (1979); https://doi.org/10.1016/0021-9614(79)90136-8