Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Manganese(IV) Complexes Derived from Polyfunctional Dihydrazone: Structural, Electrochemical and Antimicrobial Studies
Corresponding Author(s) : D. Basumatary
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Manganese(IV) complexes viz. [MnIV(nagh)(A)2]·2H2O and [MnIV(nagh)(NN)] have been synthesized from ligand bis(2-hydroxy-1-naphthaldehyde)glutaryldihydrazone (naghH4) and auxiliary ligands, A = H2O (1)/pyridine (2)/2-picoline (3)/3-picoline (4)/4-picoline (5) or NN = 2,2′-bipyridine (6)/1,10-phenanthroline (7). The elemental analysis, mass spectral and thermal studies supported the composition of all the manganese(IV) complexes. Structural aspects were determined from magnetic susceptibility, molar conductivity and spectral studies i.e. electronic, electron spin resonance and infrared. Their non-electrolytic nature were determined from molar conductances. Results from studies of magnetic moment, electronic and ESR suggested Mn(IV) ion in six-coordinate octahedral stereochemistry. The ligand coordinated to the metal in enolic form as a tetradentate in an anti-cis configuration as was correlated from IR data. Redox activities and antimicrobial potential against few Gram-positive and Gram-negative bacteria have been investigated for the dihydrazone and some manganese(IV) complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013); https://doi.org/10.1155/2013/893512
- S. Adhikari, R.A. Lal, A. Debnath and D. Dey, J. Chem. Pharm. Res., 9, 236 (2017).
- M.A.-N. Mohammed, Periodica Polytechnica, 56, 83 (2012); https://doi.org/10.3311/pp.ch.2012-2.06
- M.K. Singh, N.K. Kar and R.A. Lal, J. Coord. Chem., 61, 3158 (2008); https://doi.org/10.1080/00958970802010583
- M.K. Singh, N.K. Kar and R.A. Lal, J. Coord. Chem., 62, 1677 (2009); https://doi.org/10.1080/00958970802676649
- M.S. Refat, S.A. El-Korashy, D.N. Kumar and S.A. Ahmed, Spectrochim. Acta A Mol. Biomol. Spectrosc., 70, 898 (2008); https://doi.org/10.1016/j.saa.2007.10.005
- A.H. Ahmed, A.M. Hassan, H.A. Gumaa, B.H. Mohamed and A.M. Eraky, J. Chil. Chem. Soc., 63, 4180 (2018); https://doi.org/10.4067/S0717-97072018000404180
- R.A. Lal, A. Kumar and M.L. Pal, J. Indian Chem. Soc., 76, 70 (1999).
- X.-H. Lu, Q.-H. Xia, H.-J. Zhan, H.-X. Yuan, C.-P. Ye, K.-X. Su and G. Xu, J. Mol. Catal. Chem., 250, 62 (2006); https://doi.org/10.1016/j.molcata.2006.01.055
- R.O. Costa, S.S. Ferreira, C.A. Pereira, J.R. Harmer, C.J. Noble, G.Schenk, R.W.A Franco, J.A.L.C Resende, P. Comba, A.E. Roberts, C.Fernandes and A. Horn Jr., Front. Chem., 6, 491 (2018); https://doi.org/10.3389/fchem.2018.00491
- S.-B. Yu, S.J. Lippard, I. Shweky and A. Bino, Inorg. Chem., 31, 3502 (1992); https://doi.org/10.1021/ic00043a004
- M. Zlatar, M. Gruden, O.Y. Vassilyeva, E.A. Buvaylo, A.N. Ponomarev, S.A. Zvyagin, J.J. Wosnitza, J. Krzystek, P. Garcia-Fernandez and C. Duboc, Inorg. Chem., 55, 1192 (2016); https://doi.org/10.1021/acs.inorgchem.5b02368
- R.A. Lal, D. Basumatary, O.B. Chanu, A. Lemtur, M. Asthana, A. Kumar and A.K. De, J. Coord. Chem., 64, 300 (2011); https://doi.org/10.1080/00958972.2010.542238
- N.K. Chaudhary and P. Mishra, Bioinorg. Chem. Appl., 2017, 6927675 (2017); https://doi.org/10.1155/2017/6927675
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis including Elementary Instrumentation Analysis, Longmans: London, Eds. 4 (1978).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- D. Sadhukhan, A. Ray, G. Pilet, G.M. Rosair, E. Garribba, A. Nonat, L.J. Charbonnière and S. Mitra, Bull. Chem. Soc. Jpn., 84, 764 (2011); https://doi.org/10.1246/bcsj.20110004
- H. Temel and M. Sekerci, Synth. React. Inorg. Met.-Org. Chem., 31, 849 (2001); https://doi.org/10.1081/SIM-100104855
- N. Nishat, T. Ahamad, S. Ahmad and S. Parveen, J. Coord. Chem., 64, 2639 (2011); https://doi.org/10.1080/00958972.2011.570754
- L. Sacconi, A. Sabatini and P. Gans, Inorg. Chem., 3, 1772 (1964); https://doi.org/10.1021/ic50022a026
- C.W. Frank and L.B. Rogers, Inorg. Chem., 5, 615 (1966); https://doi.org/10.1021/ic50038a026
- G. Sartori, C. Furlani and A. Damiani, J. Inorg. Nucl. Chem., 8, 119 (1958); https://doi.org/10.1016/0022-1902(58)80172-4
- A.M. Hassan, A.H. Ahmed, H.A. Gumaa, B.H. Mohamed and A.M. Eraky, J. Chem. Pharm. Res., 7, 91 (2015).
- M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
- B. Murukan and K. Mohanan, Transition Met. Chem., 31, 441 (2006); https://doi.org/10.1007/s11243-006-0011-7
- R. Mukhopadhyay, S. Bhattacharjee, C.K. Pal, S. Karmakar and R. Bhattacharyya, J. Chem. Soc., Dalton Trans., 2267 (1997); https://doi.org/10.1039/a700855d
- J.R. Hartman, B.M. Foxman and S.R. Cooper, Inorg. Chem., 23, 1381 (1984); https://doi.org/10.1021/ic00178a017
- H. Okawa, M. Nakamura and S. Kida, Bull. Chem. Soc. Jpn., 55, 466 (1982); https://doi.org/10.1246/bcsj.55.466
- C.P. Pradeep, P.S. Zacharias and S.K. Das, J. Chem. Sci., 118, 311 (2006); https://doi.org/10.1007/BF02708524
- P.J. Chirik and K. Wieghardt, Science, 327, 794 (2010); https://doi.org/10.1126/science.1183281
- M.D. Ward and J.A. McCleverty, J. Chem. Soc., Dalton Trans., 3, 275 (2002); https://doi.org/10.1039/b110131p
- R.S. Joseyphus and M.S. Nair, J. Coord. Chem., 62, 319 (2009); https://doi.org/10.1080/00958970802236048
- S.B. Bakare, Pol. J. Chem. Technol., 21, 26 (2019); https://doi.org/10.2478/pjct-2019-0026
- S.M. Abdallah, M.A. Zayed and G.G. Mohamed, Arabian. J. Chem., 3, 103 (2010); https://doi.org/10.1016/j.arabjc.2010.02.006
References
A. Kajal, S. Bala, S. Kamboj, N. Sharma and V. Saini, J. Catal., 2013, 893512 (2013); https://doi.org/10.1155/2013/893512
S. Adhikari, R.A. Lal, A. Debnath and D. Dey, J. Chem. Pharm. Res., 9, 236 (2017).
M.A.-N. Mohammed, Periodica Polytechnica, 56, 83 (2012); https://doi.org/10.3311/pp.ch.2012-2.06
M.K. Singh, N.K. Kar and R.A. Lal, J. Coord. Chem., 61, 3158 (2008); https://doi.org/10.1080/00958970802010583
M.K. Singh, N.K. Kar and R.A. Lal, J. Coord. Chem., 62, 1677 (2009); https://doi.org/10.1080/00958970802676649
M.S. Refat, S.A. El-Korashy, D.N. Kumar and S.A. Ahmed, Spectrochim. Acta A Mol. Biomol. Spectrosc., 70, 898 (2008); https://doi.org/10.1016/j.saa.2007.10.005
A.H. Ahmed, A.M. Hassan, H.A. Gumaa, B.H. Mohamed and A.M. Eraky, J. Chil. Chem. Soc., 63, 4180 (2018); https://doi.org/10.4067/S0717-97072018000404180
R.A. Lal, A. Kumar and M.L. Pal, J. Indian Chem. Soc., 76, 70 (1999).
X.-H. Lu, Q.-H. Xia, H.-J. Zhan, H.-X. Yuan, C.-P. Ye, K.-X. Su and G. Xu, J. Mol. Catal. Chem., 250, 62 (2006); https://doi.org/10.1016/j.molcata.2006.01.055
R.O. Costa, S.S. Ferreira, C.A. Pereira, J.R. Harmer, C.J. Noble, G.Schenk, R.W.A Franco, J.A.L.C Resende, P. Comba, A.E. Roberts, C.Fernandes and A. Horn Jr., Front. Chem., 6, 491 (2018); https://doi.org/10.3389/fchem.2018.00491
S.-B. Yu, S.J. Lippard, I. Shweky and A. Bino, Inorg. Chem., 31, 3502 (1992); https://doi.org/10.1021/ic00043a004
M. Zlatar, M. Gruden, O.Y. Vassilyeva, E.A. Buvaylo, A.N. Ponomarev, S.A. Zvyagin, J.J. Wosnitza, J. Krzystek, P. Garcia-Fernandez and C. Duboc, Inorg. Chem., 55, 1192 (2016); https://doi.org/10.1021/acs.inorgchem.5b02368
R.A. Lal, D. Basumatary, O.B. Chanu, A. Lemtur, M. Asthana, A. Kumar and A.K. De, J. Coord. Chem., 64, 300 (2011); https://doi.org/10.1080/00958972.2010.542238
N.K. Chaudhary and P. Mishra, Bioinorg. Chem. Appl., 2017, 6927675 (2017); https://doi.org/10.1155/2017/6927675
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis including Elementary Instrumentation Analysis, Longmans: London, Eds. 4 (1978).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
D. Sadhukhan, A. Ray, G. Pilet, G.M. Rosair, E. Garribba, A. Nonat, L.J. Charbonnière and S. Mitra, Bull. Chem. Soc. Jpn., 84, 764 (2011); https://doi.org/10.1246/bcsj.20110004
H. Temel and M. Sekerci, Synth. React. Inorg. Met.-Org. Chem., 31, 849 (2001); https://doi.org/10.1081/SIM-100104855
N. Nishat, T. Ahamad, S. Ahmad and S. Parveen, J. Coord. Chem., 64, 2639 (2011); https://doi.org/10.1080/00958972.2011.570754
L. Sacconi, A. Sabatini and P. Gans, Inorg. Chem., 3, 1772 (1964); https://doi.org/10.1021/ic50022a026
C.W. Frank and L.B. Rogers, Inorg. Chem., 5, 615 (1966); https://doi.org/10.1021/ic50038a026
G. Sartori, C. Furlani and A. Damiani, J. Inorg. Nucl. Chem., 8, 119 (1958); https://doi.org/10.1016/0022-1902(58)80172-4
A.M. Hassan, A.H. Ahmed, H.A. Gumaa, B.H. Mohamed and A.M. Eraky, J. Chem. Pharm. Res., 7, 91 (2015).
M. Tyagi, S. Chandra and P. Tyagi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 1 (2014); https://doi.org/10.1016/j.saa.2013.07.074
B. Murukan and K. Mohanan, Transition Met. Chem., 31, 441 (2006); https://doi.org/10.1007/s11243-006-0011-7
R. Mukhopadhyay, S. Bhattacharjee, C.K. Pal, S. Karmakar and R. Bhattacharyya, J. Chem. Soc., Dalton Trans., 2267 (1997); https://doi.org/10.1039/a700855d
J.R. Hartman, B.M. Foxman and S.R. Cooper, Inorg. Chem., 23, 1381 (1984); https://doi.org/10.1021/ic00178a017
H. Okawa, M. Nakamura and S. Kida, Bull. Chem. Soc. Jpn., 55, 466 (1982); https://doi.org/10.1246/bcsj.55.466
C.P. Pradeep, P.S. Zacharias and S.K. Das, J. Chem. Sci., 118, 311 (2006); https://doi.org/10.1007/BF02708524
P.J. Chirik and K. Wieghardt, Science, 327, 794 (2010); https://doi.org/10.1126/science.1183281
M.D. Ward and J.A. McCleverty, J. Chem. Soc., Dalton Trans., 3, 275 (2002); https://doi.org/10.1039/b110131p
R.S. Joseyphus and M.S. Nair, J. Coord. Chem., 62, 319 (2009); https://doi.org/10.1080/00958970802236048
S.B. Bakare, Pol. J. Chem. Technol., 21, 26 (2019); https://doi.org/10.2478/pjct-2019-0026
S.M. Abdallah, M.A. Zayed and G.G. Mohamed, Arabian. J. Chem., 3, 103 (2010); https://doi.org/10.1016/j.arabjc.2010.02.006