Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Overview of Electrode Materials Progressed for Application in Electrochemical Supercapacitors: An Update
Corresponding Author(s) : A. Samson Nesaraj
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Supercapacitors are the most maintainable energy conservation devices and have pulled in broad consideration due to long cycle life, excellent power density, stability and integrity. As of now, all researchers are concentrating on how the energy density can be improved while retaining high power density, fast charge or discharge and cycling stability. In this review, we look into the most broadly used electrode materials based on carbon nanotubes (CNTs), graphene, activated carbon, carbon quantum dots, porous carbon, metal oxides, conducting polymers, composite hybrid materials, asymmetric hybrid materials, battery type electrode materials, etc. for designing various types of supercapacitors and their characteristic performance. This review would help to understand the recent advancements progressed in electrode materials for applications in electrochemical supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.J. Hall and E.J. Bain, Energy Policy, 36, 4352 (2008); https://doi.org/10.1016/j.enpol.2008.09.037
- B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong and M. Liu, Energy Storage Mater., 7, 32 (2017); https://doi.org/10.1016/j.ensm.2016.11.010
- S. Liu, L. Wei and H. Wang, Appl. Energy, 278, 115436 (2020); https://doi.org/10.1016/j.apenergy.2020.115436
- J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736
- E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001); https://doi.org/10.1016/S0008-6223(00)00183-4
- R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
- Y. Jiang and J. Liu, Energy, Environ. Mater., 2, 30 (2019); https://doi.org/10.1002/eem2.12028
- M.J. Young, A.M. Holder, S.M. George and C.B. Musgrave, Chem. Mater., 27, 1172 (2015); https://doi.org/10.1021/cm503544e
- Y. Li, M. van Zijll, S. Chiang and N. Pan, J. Power Sources, 196, 6003 (2011); https://doi.org/10.1016/j.jpowsour.2011.02.092
- D. Majumdar, M. Mandal and S.K. Bhattacharya, Emergent Mater., 3, 347 (2020); https://doi.org/10.1007/s42247-020-00090-5
- B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao and Y. Yang, Energy Environ. Sci., 4, 2826 (2011); https://doi.org/10.1039/c1ee01198g
- P. Sharma and T.S. Bhatti, Energy Convers. Manage., 51, 2901 (2010); https://doi.org/10.1016/j.enconman.2010.06.031
- T.K. Enock, C.K. King’ondu, A. Pogrebnoi and Y.A.C. Jande, Int. J. Electrochem., 2017, 6453420 (2017); https://doi.org/10.1155/2017/6453420
- L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010); https://doi.org/10.1039/c000417k
- H. Xian, T. Peng, H. Sun and J. Wang, J. Mater. Sci., 50, 4025 (2015); https://doi.org/10.1007/s10853-015-8959-3
- N.L. Wu, Mater. Chem. Phys., 75, 6 (2002); https://doi.org/10.1016/S0254-0584(02)00022-6
- M. Hasan and M. Lee, Progress Nat. Sci: Mater. Int., 24, 579 (2014); https://doi.org/10.1016/j.pnsc.2014.10.004
- C. Huang, J. Zhang, N.P. Young, H.J. Snaith and P.S. Grant, Sci. Rep., 6, 25684 (2016); https://doi.org/10.1038/srep25684
- T. Esawy, M. Khairy, A. Hany and M.A. Mousa, Appl. Phys., A Mater. Sci. Process., 124, 566 (2018); https://doi.org/10.1007/s00339-018-1967-9
- W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui and H.N. Alshareef, Nano Lett., 11, 5165 (2011); https://doi.org/10.1021/nl2023433
- L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi and A. ter Heijne, Biotechnol. Adv., 39, 107456 (2020); https://doi.org/10.1016/j.biotechadv.2019.107456
- Z.S. Iro, C. Subramani and S.S. Dash, Int. J. Electrochem. Sci., 11, 10628 (2016); https://doi.org/10.20964/2016.12.50
- O.S. Okwundu, C.O. Ugwuoke and C.O. Augustine, Metall. Mater.Trans., A Phys. Metall. Mater. Sci., 25, 105 (2019); https://doi.org/10.30544/417
- J.R. Rani, R. Thangavel, S.I. Oh, S.Y. Lee and J.H. Jang, Nanomaterials, 9, 148 (2019); https://doi.org/10.3390/nano9020148
- X. Li and B. Wei, Nano Energy, 2, 159 (2013); https://doi.org/10.1016/j.nanoen.2012.09.008
- P. Ratajczak, M.E. Suss, F. Kaasik and F. Béguin, Energy Storage Mater., 16, 126 (2019); https://doi.org/10.1016/j.ensm.2018.04.031
- Z. Zhou, Y. Zhu, Z. Wu, F. Lu, M. Jing and X. Ji, RSC Adv., 4, 6927 (2014); https://doi.org/10.1039/c3ra46641h
- M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci., 3, 1196 (2008).
- P. Sharma and V. Kumar, Pramana Res. J., 8, 50 (2018).
- R.S. Kate, S.A. Khalate and R.J. Deokate, J. Alloys Compd., 734, 89 (2018); https://doi.org/10.1016/j.jallcom.2017.10.262
- K. Krishnan, P. Jayaraman, S. Balasubramanian and U. Mani, J. Mater. Chem. A Mater. Energy Sustain., 6, 23650 (2018); https://doi.org/10.1039/C8TA09524H
- A. Muzaffar, M.B. Ahamed, K. Deshmukh and J. Thirumalai, Renew.Sustain. Energy Rev., 101, 123 (2019); https://doi.org/10.1016/j.rser.2018.10.026
- E. Redondo, L.W.L. Fevre, R. Fields, R. Todd, A.J. Forsyth and R.A.W.Dryfe, Electrochim. Acta, 360, 136957 (2020);https://doi.org/10.1016/j.electacta.2020.136957
- P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
- O. Erol, I. Uyan, M. Hatip, C. Yilmaz, A.B. Tekinay and M.O. Guler, Nanomedicine, 14, 2433 (2018); https://doi.org/10.1016/j.nano.2017.03.021
- A. Venkataraman, E.V. Amadi, Y. Chen and C. Papadopoulos, Nanoscale Res. Lett., 14, 220 (2019); https://doi.org/10.1186/s11671-019-3046-3
- X. Chen, R. Paul and L. Dai, Natl. Sci. Rev., 4, 453 (2017); https://doi.org/10.1093/nsr/nwx009
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
- N.M.R. Peres and R.M. Ribeiro, New J. Phys., 11, 095002 (2009); https://doi.org/10.1088/1367-2630/11/9/095002
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965
- S. Zhu, S. Yuan and G.C.A.M. Janssen, Europhys. Lett., 108, 17007 (2014); https://doi.org/10.1209/0295-5075/108/17007
- W. Kong, H. Kum, S.-H. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, Nat. Nanotechnol., 14, 927 (2019); https://doi.org/10.1038/s41565-019-0555-2
- M.I. Bhavana and H.J. Ahalapatiya, Chem. Sci. Int. J., 23, 1 (2018); https://doi.org/10.9734/CSJI/2018/41031
- R. Karthick and F. Chen, Carbon, 150, 292 (2019); https://doi.org/10.1016/j.carbon.2019.05.017
- C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); https://doi.org/10.1021/nl102661q
- H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee and W. Lu, Nanotechnology, 28, 445401 (2017); https://doi.org/10.1088/1361-6528/aa8948
- Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu and H.-M. Cheng, ACS Nano, 4, 5835 (2010); https://doi.org/10.1021/nn101754k
- H. Huang and X. Wang, Nanoscale, 3, 3185 (2011); https://doi.org/10.1039/c1nr10229j
- K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu and Z. Liu, Electrochim. Acta, 116, 111 (2014); https://doi.org/10.1016/j.electacta.2013.11.036
- F. Boorboor Ajdari, E. Kowsari, M. Niknam Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S. Kholghi Eshkalak, V. HaddadiAsl, A. Chinnappan and S. Ramakrishna, Coord. Chem. Rev., 422, 213441 (2020); https://doi.org/10.1016/j.ccr.2020.213441
- A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources, 157, 11 (2006); https://doi.org/10.1016/j.jpowsour.2006.02.065
- D. Das, D.P. Samal and B.C. Meikap, J. Chem. Eng. Process Technol.,6, 100248 (2015); https://doi.org/10.4172/2157-7048.1000248
- M.A.F. Mazlan, Y. Uemura, S. Yusup, F. Elhassan, A. Uddin, A. Hiwada and M. Demiya, Procedia Eng., 148, 530 (2016); https://doi.org/10.1016/j.proeng.2016.06.549
- J. Wang and S. Kaskel, J. Mater. Chem., 22, 23710 (2012); https://doi.org/10.1039/c2jm34066f
- T. Exner, M. Ahuja and L. Ellwood, Clin. Chem. Lab. Med., 57, 690 (2019); https://doi.org/10.1515/cclm-2018-0967
- L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
- D. Weingarth, A. Foelske-Schmitz and R. Kotz, J. Power Sources, 225, 84 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.019
- S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E
- K. Kakaei, S. Khodadoost, M. Gholipour and N. Shouraei, J. Phys. Chem. Solids, 148, 109753 (2021); https://doi.org/10.1016/j.jpcs.2020.109753
- X. Jian, H.M. Yang, J.G. Li, E. Zhang, L. Cao and Z. Liang, Electrochim. Acta, 228, 483 (2017); https://doi.org/10.1016/j.electacta.2017.01.082
- Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia and X. Ji, J. Mater. Chem. A Mater. Energy Sustain., 3, 866 (2015); https://doi.org/10.1039/C4TA05507A
- L. Lv, Y. Fan, Q. Chen, Y. Zhao, Y. Hu, Z. Zhang, N. Chen and L. Qu, Nanotechnology, 25, 235401 (2014); https://doi.org/10.1088/0957-4484/25/23/235401
- S. Sahoo, A.K. Satpati, P.K. Sahoo and P.D. Naik, ACS Omega, 3, 17936 (2018); https://doi.org/10.1021/acsomega.8b01238
- Y. Zhou and Y. Xie, J. Solid State Electrochem., 22, 2515 (2018); https://doi.org/10.1007/s10008-018-3964-5
- H. Lv, Y. Yuan, Q. Xu, H. Liu, Y.G. Wang and Y. Xia, J. Power Sources, 398, 167 (2018); https://doi.org/10.1016/j.jpowsour.2018.07.059
- J. Li, X. Yun, Z. Hu, L. Xi, N. Li, H. Tang, P. Lu and Y. Zhu, J. Mater. Chem. A Mater. Energy Sustain., 7, 26311 (2019); https://doi.org/10.1039/C9TA08151H
- J.S. Wei, H. Ding, P. Zhang, Y.F. Song, J. Chen, Y.G. Wang and H.M.Xiong, Nano Micro Small, 12, 5927 (2016); https://doi.org/10.1002/smll.201602164
- Y. Wei, X. Zhang, X. Wu, D. Tang, K. Cai, Q. Zhang and Z. Qingguo, RSC Adv., 6, 39317 (2016); https://doi.org/10.1039/C6RA02730J
- F. Markoulidis, C. Lei, C. Lekakou, E. Figgemeier, D. Duff, S. Khalil, B. Martorana and I. Cannavaro, IOP Conf. Ser.: Mater. Sci. Eng., 40, 012021 (2012); https://doi.org/10.1088/1757-899X/40/1/012021
- J. Saleem, U.B. Shahid, M. Hijab, H. Mackey and G. McKay, Biomass Convers. Biorefin., 9, 775 (2019); https://doi.org/10.1007/s13399-019-00473-7
- N. Job, R. Pirard, J. Marien and J.-P. Pirard, Carbon, 42, 619 (2004); https://doi.org/10.1016/j.carbon.2003.12.072
- A. Allahbakhsh and A.R. Bahramian, Nanoscale, 7, 14139 (2015); https://doi.org/10.1039/C5NR03855C
- A. Elkhatat and S.A. Al-Muhtaseb, Adv. Mater., 23, 2887 (2011); https://doi.org/10.1002/adma.201100283
- W. Zhang, S.-H. Huang, C. Zhou, G. Cao, F. Kang and Y. Yang, J. Mater. Chem., 22, 7158 (2012); https://doi.org/10.1039/c2jm16276h
- W.C. Chen, T.C. Wen and H. Teng, Electrochim. Acta, 48, 641 (2003); https://doi.org/10.1016/S0013-4686(02)00734-X
- L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu and S.H. Yu, ACS Nano, 6, 7092 (2012); https://doi.org/10.1021/nn302147s
- L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Energy Environ. Sci., 6, 2497 (2013); https://doi.org/10.1039/c3ee41638k
- X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng and J.W. Liu, J. Power Sources, 230, 50 (2013); https://doi.org/10.1016/j.jpowsour.2012.12.054
- H. Guo and Q. Gao, J. Power Sources, 186, 551 (2009); https://doi.org/10.1016/j.jpowsour.2008.10.024
- Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing and Z. Fan, Carbon, 67, 119 (2014); https://doi.org/10.1016/j.carbon.2013.09.070
- M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu and L. Chen, J. Mater. Chem., 2, 2555 (2014); https://doi.org/10.1039/C3TA14445C
- V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 7, 1597 (2014); https://doi.org/10.1039/c3ee44164d
- E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin, J. Power Sources, 97–98, 822 (2001); https://doi.org/10.1016/S0378-7753(01)00736-4
- K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan, Y. Zhang, Z. Ouyang, Z. Guo and H. Zhang, Prog. Solid State Chem., 58, 100254 (2020); https://doi.org/10.1016/j.progsolidstchem.2019.100254
- A.M. Saleem, V. Desmaris and P. Enoksson, J. Nanomater., 2016, Article id 1537269 (2016); https://doi.org/10.1155/2016/1537269
- N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F. Fernando, K. Jayaramulu, D. Golberg, Y.K. Han and D.P. Dubal, Nano Micro. Small, 16, 2002806 (2020); https://doi.org/10.1002/smll.202002806
- D. Majumdar, Mater. Sci. Res. India, 15, 30 (2018); https://doi.org/10.13005/msri/150104
- B.S. Singu, U. Male, S.E. Hong and K.R. Yoon, Ionics, 22, 1485 (2016); https://doi.org/10.1007/s11581-016-1669-2
- R.M. Obodo, N.M. Shinde, U.K. Chime, S. Ezugwu, A.C. Nwanya, I. Ahmad, M. Maaza, P. Ejikeme and F.I. Ezema, Curr. Opin. Electrochem., 21, 242 (2020); https://doi.org/10.1016/j.coelec.2020.02.022
- Z. Zhao, T. Shen, Z. Liu, Q. Zhong and Y. Qin, J. Alloys Compd., 812, 152124 (2020); https://doi.org/10.1016/j.jallcom.2019.152124
- T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong and Y. Li, Nano Lett., 14, 2522 (2014); https://doi.org/10.1021/nl500255v
- M. Mastragostino, C. Arbizzani and F. Soavi, Solid State Ion., 148, 493 (2002); https://doi.org/10.1016/S0167-2738(02)00093-0
- D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu and H.M. Cheng, ASC Nano, 3, 1745 (2009); https://doi.org/10.1021/nn900297m
- Z. Qiu, B.A. Hammer and K. Mullen, Prog. Polym. Sci., 100, 101179 (2020); https://doi.org/10.1016/j.progpolymsci.2019.101179
- C. Li, H. Bai and G. Shi, Chem. Soc. Rev., 38, 2397 (2009); https://doi.org/10.1039/b816681c
- I. Shown, A. Ganguly, L.C. Chen and K.H. Chen, Energy Sci. Eng., 3, 2 (2015); https://doi.org/10.1002/ese3.50
- S.A. Ebrahim, M.E. Harb, M.M. Soliman and M.B. Tayel, J. Taibah Univ. Sci., 10, 281 (2016); https://doi.org/10.1016/j.jtusci.2015.07.004
- S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. MacFarlane, M. Forsyth and D.W. Kim, J. Power Sources, 171, 1062 (2007); https://doi.org/10.1016/j.jpowsour.2007.05.103
- H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang and S. Wang, J. Power Sources, 190, 578 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.052
- Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, W.T. Tan, M.A. Yarmo and C.Y. Yin, Ceram. Int., 40, 3855 (2014); https://doi.org/10.1016/j.ceramint.2013.08.026
- G. Shi, M. Rouabhia, Z. Wang, L.H. Dao and Z. Zhang, Biomaterials, 25, 2477 (2004); https://doi.org/10.1016/j.biomaterials.2003.09.032
- A. Yagan, Int. J. Electrochem. Sci., 14, 3978 (2019); https://doi.org/10.20964/2019.04.12
- X. Jiao, C. Zhang and Z. Yuan, ACS Appl. Mater. Interfaces, 10, 41299 (2018); https://doi.org/10.1021/acsami.8b13503
- M. Rajesh, C.J. Raj, B.C. Kim, B.B. Cho, J.M. Ko and K.H. Yu, Electrochim. Acta, 220, 373 (2016); https://doi.org/10.1016/j.electacta.2016.10.118
- M. Jaymand, M. Hatamzadeh and Y. Omidi, Prog. Polym. Sci., 47, 26 (2015); https://doi.org/10.1016/j.progpolymsci.2014.11.004
- A. Laforgue, P. Simon, C. Sarrazin and J.F. Fauvarque, J. Power Sources, 80, 142 (1999); https://doi.org/10.1016/S0378-7753(98)00258-4
- H. Zhang, Z. Hu, M. Li, L. Hu and S. Jiao, J. Mater. Chem. A Mater. Energy Sustain., 2, 17024 (2014); https://doi.org/10.1039/C4TA03369H
- K.L. Knoche, D.P. Hickey, R.D. Milton, C.L. Curchoe and S.D. Minteer, ACS Energy Lett., 1, 380 (2016); https://doi.org/10.1021/acsenergylett.6b00225
- A. Burke, Electrochim. Acta, 53, 1083 (2007); https://doi.org/10.1016/j.electacta.2007.01.011
- K. Naoi and P. Simon, Electrochem. Soc. Interface, 17, 34 (2008); https://doi.org/10.1149/2.F04081IF
- T. Chen and L. Dai, Mater. Today Commun., 16, 272 (2013); https://doi.org/10.1016/j.mattod.2013.07.002
- Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang and C. Zhi, Mater. Sci. Eng. Rep., 139, 100520 (2020); https://doi.org/10.1016/j.mser.2019.100520
- J. Wang, Y. Xu, X. Sun, X. Li and X. Du, J. Solid State Electrochem., 12, 947 (2008); https://doi.org/10.1007/s10008-007-0439-5
- P. Saikia, K. Dutta, A.K. Guha, S.K. Dolui, P. Barman and L.J. Borthakur, Mater. Chem. Phys., 258, 123786 (2021); https://doi.org/10.1016/j.matchemphys.2020.123786
- S. Sundriyal, V. Shrivastav, S. Mishra and A. Deep, Int. J. Hydrogen Energy, 45, 30859 (2020); https://doi.org/10.1016/j.ijhydene.2020.08.075
- J. Chen, Y. Wang, J. Cao, L. Liao, Y. Liu, Y. Zhou, J.H. Ouyang, D. Jia, M. Wang, X. Li and Z. Li, Electrochim. Acta, 361, 137036 (2020); https://doi.org/10.1016/j.electacta.2020.137036
- X. Deng, X. Bai, Z. Cai, M. Huang, X. Chen, B. Huang and Y. Chen, J. Mater. Res. Technol., 9, 8544 (2020); https://doi.org/10.1016/j.jmrt.2020.05.130
- H.M. Yadav, S. Ramesh, K.A. Kumar, S. Shinde, S. Sandhu, A. Sivasamy, N.K. Shrestha, H.S. Kim, H.S. Kim and C. Bathula, Polym. Test., 89, 106727 (2020); https://doi.org/10.1016/j.polymertesting.2020.106727
- S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo and S. Angaiah, Green Energy Environ., 5, 259 (2020); https://doi.org/10.1016/j.gee.2020.07.021
- B.E. Conway and W.G. Pell, J. Solid State Electrochem., 7, 637 (2003); https://doi.org/10.1007/s10008-003-0395-7
- Y. Liu, D. He, H. Wu, J. Duan and Y. Zhang, Electrochim. Acta, 164, 154 (2015); https://doi.org/10.1016/j.electacta.2015.01.223
- P.C. Chen, G. Shen, Y. Shi, H. Chen and C. Zhou, ACS Nano, 4, 4403 (2010); https://doi.org/10.1021/nn100856y
- Y. Huang, T. Shi, S. Jiang, S. Cheng, X. Tao, Y. Zhong, G. Liao and Z. Tang, Sci. Rep., 6, 38620 (2016); https://doi.org/10.1038/srep38620
- X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu and J. Shen, ACS Appl.Mater. Interfaces, 8, 3776 (2016); https://doi.org/10.1021/acsami.5b10196
- L. Su, L. Gong, X. Wang and H. Pan, Int. J. Energy Res., 40, 763 (2016); https://doi.org/10.1002/er.3480
- S.G. Krishnan, M. Harilal, B. Pal, I.I. Misnon, C. Karuppiah, C.C.Yang and R. Jose, J. Electroanal. Chem. (Lausanne), 805, 126 (2017); https://doi.org/10.1016/j.jelechem.2017.10.029
- S.A. Pawar, D.S. Patil and J.C. Shin, Electrochim. Acta, 259, 664 (2018); https://doi.org/10.1016/j.electacta.2017.11.006
- J. Sun, X. Du, R. Wu, Y. Zhang, C. Xu and H. Chen, ACS Appl. Energy Mater., 3, 8026 (2020);https://doi.org/10.1021/acsaem.0c01458
- N. Li, Y. Du, Q.P. Feng, G.W. Huang, H.M. Xiao and S.Y. Fu, ACS Appl. Mater. Interfaces, 9, 44828 (2017); https://doi.org/10.1021/acsami.7b14271
- R. Sahoo, T.H. Lee, D.T. Pham, T.H. Luu and Y.H. Lee, ACS Nano, 13, 10776 (2019); https://doi.org/10.1021/acsnano.9b05605
References
P.J. Hall and E.J. Bain, Energy Policy, 36, 4352 (2008); https://doi.org/10.1016/j.enpol.2008.09.037
B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong and M. Liu, Energy Storage Mater., 7, 32 (2017); https://doi.org/10.1016/j.ensm.2016.11.010
S. Liu, L. Wei and H. Wang, Appl. Energy, 278, 115436 (2020); https://doi.org/10.1016/j.apenergy.2020.115436
J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736
E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001); https://doi.org/10.1016/S0008-6223(00)00183-4
R. Kotz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
Y. Jiang and J. Liu, Energy, Environ. Mater., 2, 30 (2019); https://doi.org/10.1002/eem2.12028
M.J. Young, A.M. Holder, S.M. George and C.B. Musgrave, Chem. Mater., 27, 1172 (2015); https://doi.org/10.1021/cm503544e
Y. Li, M. van Zijll, S. Chiang and N. Pan, J. Power Sources, 196, 6003 (2011); https://doi.org/10.1016/j.jpowsour.2011.02.092
D. Majumdar, M. Mandal and S.K. Bhattacharya, Emergent Mater., 3, 347 (2020); https://doi.org/10.1007/s42247-020-00090-5
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao and Y. Yang, Energy Environ. Sci., 4, 2826 (2011); https://doi.org/10.1039/c1ee01198g
P. Sharma and T.S. Bhatti, Energy Convers. Manage., 51, 2901 (2010); https://doi.org/10.1016/j.enconman.2010.06.031
T.K. Enock, C.K. King’ondu, A. Pogrebnoi and Y.A.C. Jande, Int. J. Electrochem., 2017, 6453420 (2017); https://doi.org/10.1155/2017/6453420
L.L. Zhang, R. Zhou and X.S. Zhao, J. Mater. Chem., 20, 5983 (2010); https://doi.org/10.1039/c000417k
H. Xian, T. Peng, H. Sun and J. Wang, J. Mater. Sci., 50, 4025 (2015); https://doi.org/10.1007/s10853-015-8959-3
N.L. Wu, Mater. Chem. Phys., 75, 6 (2002); https://doi.org/10.1016/S0254-0584(02)00022-6
M. Hasan and M. Lee, Progress Nat. Sci: Mater. Int., 24, 579 (2014); https://doi.org/10.1016/j.pnsc.2014.10.004
C. Huang, J. Zhang, N.P. Young, H.J. Snaith and P.S. Grant, Sci. Rep., 6, 25684 (2016); https://doi.org/10.1038/srep25684
T. Esawy, M. Khairy, A. Hany and M.A. Mousa, Appl. Phys., A Mater. Sci. Process., 124, 566 (2018); https://doi.org/10.1007/s00339-018-1967-9
W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui and H.N. Alshareef, Nano Lett., 11, 5165 (2011); https://doi.org/10.1021/nl2023433
L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi and A. ter Heijne, Biotechnol. Adv., 39, 107456 (2020); https://doi.org/10.1016/j.biotechadv.2019.107456
Z.S. Iro, C. Subramani and S.S. Dash, Int. J. Electrochem. Sci., 11, 10628 (2016); https://doi.org/10.20964/2016.12.50
O.S. Okwundu, C.O. Ugwuoke and C.O. Augustine, Metall. Mater.Trans., A Phys. Metall. Mater. Sci., 25, 105 (2019); https://doi.org/10.30544/417
J.R. Rani, R. Thangavel, S.I. Oh, S.Y. Lee and J.H. Jang, Nanomaterials, 9, 148 (2019); https://doi.org/10.3390/nano9020148
X. Li and B. Wei, Nano Energy, 2, 159 (2013); https://doi.org/10.1016/j.nanoen.2012.09.008
P. Ratajczak, M.E. Suss, F. Kaasik and F. Béguin, Energy Storage Mater., 16, 126 (2019); https://doi.org/10.1016/j.ensm.2018.04.031
Z. Zhou, Y. Zhu, Z. Wu, F. Lu, M. Jing and X. Ji, RSC Adv., 4, 6927 (2014); https://doi.org/10.1039/c3ra46641h
M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci., 3, 1196 (2008).
P. Sharma and V. Kumar, Pramana Res. J., 8, 50 (2018).
R.S. Kate, S.A. Khalate and R.J. Deokate, J. Alloys Compd., 734, 89 (2018); https://doi.org/10.1016/j.jallcom.2017.10.262
K. Krishnan, P. Jayaraman, S. Balasubramanian and U. Mani, J. Mater. Chem. A Mater. Energy Sustain., 6, 23650 (2018); https://doi.org/10.1039/C8TA09524H
A. Muzaffar, M.B. Ahamed, K. Deshmukh and J. Thirumalai, Renew.Sustain. Energy Rev., 101, 123 (2019); https://doi.org/10.1016/j.rser.2018.10.026
E. Redondo, L.W.L. Fevre, R. Fields, R. Todd, A.J. Forsyth and R.A.W.Dryfe, Electrochim. Acta, 360, 136957 (2020);https://doi.org/10.1016/j.electacta.2020.136957
P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008); https://doi.org/10.1038/nmat2297
O. Erol, I. Uyan, M. Hatip, C. Yilmaz, A.B. Tekinay and M.O. Guler, Nanomedicine, 14, 2433 (2018); https://doi.org/10.1016/j.nano.2017.03.021
A. Venkataraman, E.V. Amadi, Y. Chen and C. Papadopoulos, Nanoscale Res. Lett., 14, 220 (2019); https://doi.org/10.1186/s11671-019-3046-3
X. Chen, R. Paul and L. Dai, Natl. Sci. Rev., 4, 453 (2017); https://doi.org/10.1093/nsr/nwx009
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
N.M.R. Peres and R.M. Ribeiro, New J. Phys., 11, 095002 (2009); https://doi.org/10.1088/1367-2630/11/9/095002
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965
S. Zhu, S. Yuan and G.C.A.M. Janssen, Europhys. Lett., 108, 17007 (2014); https://doi.org/10.1209/0295-5075/108/17007
W. Kong, H. Kum, S.-H. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, Nat. Nanotechnol., 14, 927 (2019); https://doi.org/10.1038/s41565-019-0555-2
M.I. Bhavana and H.J. Ahalapatiya, Chem. Sci. Int. J., 23, 1 (2018); https://doi.org/10.9734/CSJI/2018/41031
R. Karthick and F. Chen, Carbon, 150, 292 (2019); https://doi.org/10.1016/j.carbon.2019.05.017
C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); https://doi.org/10.1021/nl102661q
H. Yang, S. Kannappan, A.S. Pandian, J.-H. Jang, Y.S. Lee and W. Lu, Nanotechnology, 28, 445401 (2017); https://doi.org/10.1088/1361-6528/aa8948
Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu and H.-M. Cheng, ACS Nano, 4, 5835 (2010); https://doi.org/10.1021/nn101754k
H. Huang and X. Wang, Nanoscale, 3, 3185 (2011); https://doi.org/10.1039/c1nr10229j
K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu and Z. Liu, Electrochim. Acta, 116, 111 (2014); https://doi.org/10.1016/j.electacta.2013.11.036
F. Boorboor Ajdari, E. Kowsari, M. Niknam Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S. Kholghi Eshkalak, V. HaddadiAsl, A. Chinnappan and S. Ramakrishna, Coord. Chem. Rev., 422, 213441 (2020); https://doi.org/10.1016/j.ccr.2020.213441
A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources, 157, 11 (2006); https://doi.org/10.1016/j.jpowsour.2006.02.065
D. Das, D.P. Samal and B.C. Meikap, J. Chem. Eng. Process Technol.,6, 100248 (2015); https://doi.org/10.4172/2157-7048.1000248
M.A.F. Mazlan, Y. Uemura, S. Yusup, F. Elhassan, A. Uddin, A. Hiwada and M. Demiya, Procedia Eng., 148, 530 (2016); https://doi.org/10.1016/j.proeng.2016.06.549
J. Wang and S. Kaskel, J. Mater. Chem., 22, 23710 (2012); https://doi.org/10.1039/c2jm34066f
T. Exner, M. Ahuja and L. Ellwood, Clin. Chem. Lab. Med., 57, 690 (2019); https://doi.org/10.1515/cclm-2018-0967
L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j
D. Weingarth, A. Foelske-Schmitz and R. Kotz, J. Power Sources, 225, 84 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.019
S.Y. Lim, W. Shen and Z. Gao, Chem. Soc. Rev., 44, 362 (2015); https://doi.org/10.1039/C4CS00269E
K. Kakaei, S. Khodadoost, M. Gholipour and N. Shouraei, J. Phys. Chem. Solids, 148, 109753 (2021); https://doi.org/10.1016/j.jpcs.2020.109753
X. Jian, H.M. Yang, J.G. Li, E. Zhang, L. Cao and Z. Liang, Electrochim. Acta, 228, 483 (2017); https://doi.org/10.1016/j.electacta.2017.01.082
Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia and X. Ji, J. Mater. Chem. A Mater. Energy Sustain., 3, 866 (2015); https://doi.org/10.1039/C4TA05507A
L. Lv, Y. Fan, Q. Chen, Y. Zhao, Y. Hu, Z. Zhang, N. Chen and L. Qu, Nanotechnology, 25, 235401 (2014); https://doi.org/10.1088/0957-4484/25/23/235401
S. Sahoo, A.K. Satpati, P.K. Sahoo and P.D. Naik, ACS Omega, 3, 17936 (2018); https://doi.org/10.1021/acsomega.8b01238
Y. Zhou and Y. Xie, J. Solid State Electrochem., 22, 2515 (2018); https://doi.org/10.1007/s10008-018-3964-5
H. Lv, Y. Yuan, Q. Xu, H. Liu, Y.G. Wang and Y. Xia, J. Power Sources, 398, 167 (2018); https://doi.org/10.1016/j.jpowsour.2018.07.059
J. Li, X. Yun, Z. Hu, L. Xi, N. Li, H. Tang, P. Lu and Y. Zhu, J. Mater. Chem. A Mater. Energy Sustain., 7, 26311 (2019); https://doi.org/10.1039/C9TA08151H
J.S. Wei, H. Ding, P. Zhang, Y.F. Song, J. Chen, Y.G. Wang and H.M.Xiong, Nano Micro Small, 12, 5927 (2016); https://doi.org/10.1002/smll.201602164
Y. Wei, X. Zhang, X. Wu, D. Tang, K. Cai, Q. Zhang and Z. Qingguo, RSC Adv., 6, 39317 (2016); https://doi.org/10.1039/C6RA02730J
F. Markoulidis, C. Lei, C. Lekakou, E. Figgemeier, D. Duff, S. Khalil, B. Martorana and I. Cannavaro, IOP Conf. Ser.: Mater. Sci. Eng., 40, 012021 (2012); https://doi.org/10.1088/1757-899X/40/1/012021
J. Saleem, U.B. Shahid, M. Hijab, H. Mackey and G. McKay, Biomass Convers. Biorefin., 9, 775 (2019); https://doi.org/10.1007/s13399-019-00473-7
N. Job, R. Pirard, J. Marien and J.-P. Pirard, Carbon, 42, 619 (2004); https://doi.org/10.1016/j.carbon.2003.12.072
A. Allahbakhsh and A.R. Bahramian, Nanoscale, 7, 14139 (2015); https://doi.org/10.1039/C5NR03855C
A. Elkhatat and S.A. Al-Muhtaseb, Adv. Mater., 23, 2887 (2011); https://doi.org/10.1002/adma.201100283
W. Zhang, S.-H. Huang, C. Zhou, G. Cao, F. Kang and Y. Yang, J. Mater. Chem., 22, 7158 (2012); https://doi.org/10.1039/c2jm16276h
W.C. Chen, T.C. Wen and H. Teng, Electrochim. Acta, 48, 641 (2003); https://doi.org/10.1016/S0013-4686(02)00734-X
L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu and S.H. Yu, ACS Nano, 6, 7092 (2012); https://doi.org/10.1021/nn302147s
L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Energy Environ. Sci., 6, 2497 (2013); https://doi.org/10.1039/c3ee41638k
X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng and J.W. Liu, J. Power Sources, 230, 50 (2013); https://doi.org/10.1016/j.jpowsour.2012.12.054
H. Guo and Q. Gao, J. Power Sources, 186, 551 (2009); https://doi.org/10.1016/j.jpowsour.2008.10.024
Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing and Z. Fan, Carbon, 67, 119 (2014); https://doi.org/10.1016/j.carbon.2013.09.070
M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu and L. Chen, J. Mater. Chem., 2, 2555 (2014); https://doi.org/10.1039/C3TA14445C
V. Augustyn, P. Simon and B. Dunn, Energy Environ. Sci., 7, 1597 (2014); https://doi.org/10.1039/c3ee44164d
E. Frackowiak, K. Jurewicz, S. Delpeux and F. Beguin, J. Power Sources, 97–98, 822 (2001); https://doi.org/10.1016/S0378-7753(01)00736-4
K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan, Y. Zhang, Z. Ouyang, Z. Guo and H. Zhang, Prog. Solid State Chem., 58, 100254 (2020); https://doi.org/10.1016/j.progsolidstchem.2019.100254
A.M. Saleem, V. Desmaris and P. Enoksson, J. Nanomater., 2016, Article id 1537269 (2016); https://doi.org/10.1155/2016/1537269
N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F. Fernando, K. Jayaramulu, D. Golberg, Y.K. Han and D.P. Dubal, Nano Micro. Small, 16, 2002806 (2020); https://doi.org/10.1002/smll.202002806
D. Majumdar, Mater. Sci. Res. India, 15, 30 (2018); https://doi.org/10.13005/msri/150104
B.S. Singu, U. Male, S.E. Hong and K.R. Yoon, Ionics, 22, 1485 (2016); https://doi.org/10.1007/s11581-016-1669-2
R.M. Obodo, N.M. Shinde, U.K. Chime, S. Ezugwu, A.C. Nwanya, I. Ahmad, M. Maaza, P. Ejikeme and F.I. Ezema, Curr. Opin. Electrochem., 21, 242 (2020); https://doi.org/10.1016/j.coelec.2020.02.022
Z. Zhao, T. Shen, Z. Liu, Q. Zhong and Y. Qin, J. Alloys Compd., 812, 152124 (2020); https://doi.org/10.1016/j.jallcom.2019.152124
T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong and Y. Li, Nano Lett., 14, 2522 (2014); https://doi.org/10.1021/nl500255v
M. Mastragostino, C. Arbizzani and F. Soavi, Solid State Ion., 148, 493 (2002); https://doi.org/10.1016/S0167-2738(02)00093-0
D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu and H.M. Cheng, ASC Nano, 3, 1745 (2009); https://doi.org/10.1021/nn900297m
Z. Qiu, B.A. Hammer and K. Mullen, Prog. Polym. Sci., 100, 101179 (2020); https://doi.org/10.1016/j.progpolymsci.2019.101179
C. Li, H. Bai and G. Shi, Chem. Soc. Rev., 38, 2397 (2009); https://doi.org/10.1039/b816681c
I. Shown, A. Ganguly, L.C. Chen and K.H. Chen, Energy Sci. Eng., 3, 2 (2015); https://doi.org/10.1002/ese3.50
S.A. Ebrahim, M.E. Harb, M.M. Soliman and M.B. Tayel, J. Taibah Univ. Sci., 10, 281 (2016); https://doi.org/10.1016/j.jtusci.2015.07.004
S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. MacFarlane, M. Forsyth and D.W. Kim, J. Power Sources, 171, 1062 (2007); https://doi.org/10.1016/j.jpowsour.2007.05.103
H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang and S. Wang, J. Power Sources, 190, 578 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.052
Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, W.T. Tan, M.A. Yarmo and C.Y. Yin, Ceram. Int., 40, 3855 (2014); https://doi.org/10.1016/j.ceramint.2013.08.026
G. Shi, M. Rouabhia, Z. Wang, L.H. Dao and Z. Zhang, Biomaterials, 25, 2477 (2004); https://doi.org/10.1016/j.biomaterials.2003.09.032
A. Yagan, Int. J. Electrochem. Sci., 14, 3978 (2019); https://doi.org/10.20964/2019.04.12
X. Jiao, C. Zhang and Z. Yuan, ACS Appl. Mater. Interfaces, 10, 41299 (2018); https://doi.org/10.1021/acsami.8b13503
M. Rajesh, C.J. Raj, B.C. Kim, B.B. Cho, J.M. Ko and K.H. Yu, Electrochim. Acta, 220, 373 (2016); https://doi.org/10.1016/j.electacta.2016.10.118
M. Jaymand, M. Hatamzadeh and Y. Omidi, Prog. Polym. Sci., 47, 26 (2015); https://doi.org/10.1016/j.progpolymsci.2014.11.004
A. Laforgue, P. Simon, C. Sarrazin and J.F. Fauvarque, J. Power Sources, 80, 142 (1999); https://doi.org/10.1016/S0378-7753(98)00258-4
H. Zhang, Z. Hu, M. Li, L. Hu and S. Jiao, J. Mater. Chem. A Mater. Energy Sustain., 2, 17024 (2014); https://doi.org/10.1039/C4TA03369H
K.L. Knoche, D.P. Hickey, R.D. Milton, C.L. Curchoe and S.D. Minteer, ACS Energy Lett., 1, 380 (2016); https://doi.org/10.1021/acsenergylett.6b00225
A. Burke, Electrochim. Acta, 53, 1083 (2007); https://doi.org/10.1016/j.electacta.2007.01.011
K. Naoi and P. Simon, Electrochem. Soc. Interface, 17, 34 (2008); https://doi.org/10.1149/2.F04081IF
T. Chen and L. Dai, Mater. Today Commun., 16, 272 (2013); https://doi.org/10.1016/j.mattod.2013.07.002
Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang and C. Zhi, Mater. Sci. Eng. Rep., 139, 100520 (2020); https://doi.org/10.1016/j.mser.2019.100520
J. Wang, Y. Xu, X. Sun, X. Li and X. Du, J. Solid State Electrochem., 12, 947 (2008); https://doi.org/10.1007/s10008-007-0439-5
P. Saikia, K. Dutta, A.K. Guha, S.K. Dolui, P. Barman and L.J. Borthakur, Mater. Chem. Phys., 258, 123786 (2021); https://doi.org/10.1016/j.matchemphys.2020.123786
S. Sundriyal, V. Shrivastav, S. Mishra and A. Deep, Int. J. Hydrogen Energy, 45, 30859 (2020); https://doi.org/10.1016/j.ijhydene.2020.08.075
J. Chen, Y. Wang, J. Cao, L. Liao, Y. Liu, Y. Zhou, J.H. Ouyang, D. Jia, M. Wang, X. Li and Z. Li, Electrochim. Acta, 361, 137036 (2020); https://doi.org/10.1016/j.electacta.2020.137036
X. Deng, X. Bai, Z. Cai, M. Huang, X. Chen, B. Huang and Y. Chen, J. Mater. Res. Technol., 9, 8544 (2020); https://doi.org/10.1016/j.jmrt.2020.05.130
H.M. Yadav, S. Ramesh, K.A. Kumar, S. Shinde, S. Sandhu, A. Sivasamy, N.K. Shrestha, H.S. Kim, H.S. Kim and C. Bathula, Polym. Test., 89, 106727 (2020); https://doi.org/10.1016/j.polymertesting.2020.106727
S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo and S. Angaiah, Green Energy Environ., 5, 259 (2020); https://doi.org/10.1016/j.gee.2020.07.021
B.E. Conway and W.G. Pell, J. Solid State Electrochem., 7, 637 (2003); https://doi.org/10.1007/s10008-003-0395-7
Y. Liu, D. He, H. Wu, J. Duan and Y. Zhang, Electrochim. Acta, 164, 154 (2015); https://doi.org/10.1016/j.electacta.2015.01.223
P.C. Chen, G. Shen, Y. Shi, H. Chen and C. Zhou, ACS Nano, 4, 4403 (2010); https://doi.org/10.1021/nn100856y
Y. Huang, T. Shi, S. Jiang, S. Cheng, X. Tao, Y. Zhong, G. Liao and Z. Tang, Sci. Rep., 6, 38620 (2016); https://doi.org/10.1038/srep38620
X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu and J. Shen, ACS Appl.Mater. Interfaces, 8, 3776 (2016); https://doi.org/10.1021/acsami.5b10196
L. Su, L. Gong, X. Wang and H. Pan, Int. J. Energy Res., 40, 763 (2016); https://doi.org/10.1002/er.3480
S.G. Krishnan, M. Harilal, B. Pal, I.I. Misnon, C. Karuppiah, C.C.Yang and R. Jose, J. Electroanal. Chem. (Lausanne), 805, 126 (2017); https://doi.org/10.1016/j.jelechem.2017.10.029
S.A. Pawar, D.S. Patil and J.C. Shin, Electrochim. Acta, 259, 664 (2018); https://doi.org/10.1016/j.electacta.2017.11.006
J. Sun, X. Du, R. Wu, Y. Zhang, C. Xu and H. Chen, ACS Appl. Energy Mater., 3, 8026 (2020);https://doi.org/10.1021/acsaem.0c01458
N. Li, Y. Du, Q.P. Feng, G.W. Huang, H.M. Xiao and S.Y. Fu, ACS Appl. Mater. Interfaces, 9, 44828 (2017); https://doi.org/10.1021/acsami.7b14271
R. Sahoo, T.H. Lee, D.T. Pham, T.H. Luu and Y.H. Lee, ACS Nano, 13, 10776 (2019); https://doi.org/10.1021/acsnano.9b05605