Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
COVID-19 Protease Inhibitor using Azole N-Mannich Bases: A Molecular Docking Approach
Corresponding Author(s) : K.N. Arathi
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Coronaviruses are the largest group of viruses belonging to the Nidovirales order, which includes Coronaviridae, Arteriviridae and Roniviridae families. In this work, a molecular modeling technique is adopted to find out the excellent moiety to inhibit the protease enzyme which is present in the coronavirus. Autodock 4.2 tool was used to find out the docking score of 32 ligands. The molinspiration server helps to find out the drug-likeness property and whether these ligands having a binding towards the protease enzyme. The synthetic N-Mannich bases of azole were docked with COVID-19 main protease in complex with an inhibitor N3 (PDB id: 6lu7). Among 32 ligand molecules, around 25 ligands showed an excellent binding score when compared to the standard drug favipiravir. The presence of dimethyl group in the pyrazole nucleus helps good interaction with protease enzyme. Among the Mannich bases, the secondary amine mannich base of piperazine considered as the best derivative to inhibit the protease enzyme.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Marco, M. Rajnik, A. Cuomo, S.C. Dulebohn and R. Di Napoli, Features, Evaluation and Treatment of Coronavirus (COVID-19), In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2021).
- R.S. Joshi, S.S. Jagdale, S.B. Bansode, S.S. Shankar, M.B. Tellis, V.K. Pandya, A. Chugh, A.P. Giri and M.J. Kulkarni, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1760137
- A.R. Fehr and S. Perlman, Methods Mol. Biol., 1282, 1 (2015); https://doi.org/10.1007/978-1-4939-2438-7_1
- T.J. Pallasc, Periodontology, 28, 240 (2002); https://doi.org/10.1034/j.1600-0757.2002.280110.x
- E. Rhoden, W.A. Nix, W.C. Weldon and R. Selvarangan, Antiviral Res., 149, 75 (2018); https://doi.org/10.1016/j.antiviral.2017.11.011
- Z.Z. Hui, L.G. Lin, W. Hui and H.Z. Cheng, Mini Rev. Med. Chem., 17, 122 (2017); https://doi.org/10.2174/1389557516666160630120725
- V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov and O.I. Kiselev, Bioorg. Med. Chem., 18, 839 (2010); https://doi.org/10.1016/j.bmc.2009.11.047
- B. Medhi, M. Prajapat, P. Sarma, N. Shekhar, P. Avti, S. Sinha, H. Kaur, S. Kumar, A. Bhattacharyya, H. Kumar and S. Bansal, Indian J. Pharmacol., 52, 56 (2020); https://doi.org/10.4103/ijp.IJP_338_20
- S. Vinoth Kumar, M.R. Subramanian and S.K. Chinnaiyan, J. Young Pharm., 5, 154 (2013); https://doi.org/10.1016/j.jyp.2013.11.004
- K. Gullapelli, G. Brahmeshwari, M. Ravichander and U. Kusuma, Egypt. J. Basic Appl. Sci., 4, 303 (2017); https://doi.org/10.1016/j.ejbas.2017.09.002
- A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A
- J. March, Heterocyclic Chemistry, Textbook of Advanced Organic Chemistry, Reactions, Mechanisms and Structures, Wiley, pp 900-903 (1992).
- R.K. Bansal, Heterocyclic Chemistry: Synthesis, Reactions and Mechanisms, New Age International (Pvt.) Limited, pp. 514-525 (1999).
- S.M.D. Rizvi, S. Shakil and M. Haneef, EXCLI J., 12, 831 (2013).
- S. Singh, B.K. Malik and D.K. Sharma, Bioinformation, 1, 314 (2006); https://doi.org/10.6026/97320630001314
- P.J. Eddershaw, A.P. Beresford and M.K. Bayliss, Drug Discov. Today, 5, 409 (2000); https://doi.org/10.1016/S1359-6446(00)01540-3
- G. Vistoli, A. Pedretti and B. Testa, Drug Discov. Today, 13, 285 (2008); https://doi.org/10.1016/j.drudis.2007.11.007
- D.E. Ammar and A.O. Anas, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1758791
- C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/s1056-8719(00)00107-6
- C.A. Lipinski, Drug Discov. Today: Technol., 1, 337 (2004); https://doi.org/10.1016/j.ddtec.2004.11.007
- S. Forli, R. Huey, M.E. Pique, M. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
- M.R. Nisha, D.V. Sakthivel and M.G. Michael, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1752802
- S. Genheden and U. Ryde, Expert Opin. Drug Discov., 10, 449 (2015); https://doi.org/10.1517/17460441.2015.1032936
References
C. Marco, M. Rajnik, A. Cuomo, S.C. Dulebohn and R. Di Napoli, Features, Evaluation and Treatment of Coronavirus (COVID-19), In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2021).
R.S. Joshi, S.S. Jagdale, S.B. Bansode, S.S. Shankar, M.B. Tellis, V.K. Pandya, A. Chugh, A.P. Giri and M.J. Kulkarni, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1760137
A.R. Fehr and S. Perlman, Methods Mol. Biol., 1282, 1 (2015); https://doi.org/10.1007/978-1-4939-2438-7_1
T.J. Pallasc, Periodontology, 28, 240 (2002); https://doi.org/10.1034/j.1600-0757.2002.280110.x
E. Rhoden, W.A. Nix, W.C. Weldon and R. Selvarangan, Antiviral Res., 149, 75 (2018); https://doi.org/10.1016/j.antiviral.2017.11.011
Z.Z. Hui, L.G. Lin, W. Hui and H.Z. Cheng, Mini Rev. Med. Chem., 17, 122 (2017); https://doi.org/10.2174/1389557516666160630120725
V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov and O.I. Kiselev, Bioorg. Med. Chem., 18, 839 (2010); https://doi.org/10.1016/j.bmc.2009.11.047
B. Medhi, M. Prajapat, P. Sarma, N. Shekhar, P. Avti, S. Sinha, H. Kaur, S. Kumar, A. Bhattacharyya, H. Kumar and S. Bansal, Indian J. Pharmacol., 52, 56 (2020); https://doi.org/10.4103/ijp.IJP_338_20
S. Vinoth Kumar, M.R. Subramanian and S.K. Chinnaiyan, J. Young Pharm., 5, 154 (2013); https://doi.org/10.1016/j.jyp.2013.11.004
K. Gullapelli, G. Brahmeshwari, M. Ravichander and U. Kusuma, Egypt. J. Basic Appl. Sci., 4, 303 (2017); https://doi.org/10.1016/j.ejbas.2017.09.002
A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A
J. March, Heterocyclic Chemistry, Textbook of Advanced Organic Chemistry, Reactions, Mechanisms and Structures, Wiley, pp 900-903 (1992).
R.K. Bansal, Heterocyclic Chemistry: Synthesis, Reactions and Mechanisms, New Age International (Pvt.) Limited, pp. 514-525 (1999).
S.M.D. Rizvi, S. Shakil and M. Haneef, EXCLI J., 12, 831 (2013).
S. Singh, B.K. Malik and D.K. Sharma, Bioinformation, 1, 314 (2006); https://doi.org/10.6026/97320630001314
P.J. Eddershaw, A.P. Beresford and M.K. Bayliss, Drug Discov. Today, 5, 409 (2000); https://doi.org/10.1016/S1359-6446(00)01540-3
G. Vistoli, A. Pedretti and B. Testa, Drug Discov. Today, 13, 285 (2008); https://doi.org/10.1016/j.drudis.2007.11.007
D.E. Ammar and A.O. Anas, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1758791
C.A. Lipinski, J. Pharmacol. Toxicol. Methods, 44, 235 (2000); https://doi.org/10.1016/s1056-8719(00)00107-6
C.A. Lipinski, Drug Discov. Today: Technol., 1, 337 (2004); https://doi.org/10.1016/j.ddtec.2004.11.007
S. Forli, R. Huey, M.E. Pique, M. Sanner, D.S. Goodsell and A.J. Olson, Nat. Protoc., 11, 905 (2016); https://doi.org/10.1038/nprot.2016.051
M.R. Nisha, D.V. Sakthivel and M.G. Michael, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1752802
S. Genheden and U. Ryde, Expert Opin. Drug Discov., 10, 449 (2015); https://doi.org/10.1517/17460441.2015.1032936