Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Surface Modified Chitosan with Cadmium Sulfide Quantum Dots as Luminescent Probe for Detection of Silver Ions
Corresponding Author(s) : R.S. Ernest Ravindran
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
In present work, the surface modified cadmium sulfide quantum dots (CdS QDs) was synthesized with chitosan for the detection of silver ions. Chitosan was employed as matrix medium to fabricate CdS QDs, resulting in the formation of novel QDs/chitosan composite. The CdS quantum dots surface coated with chitosan were analyzed using UV-vis spectrophotometer, X-ray diffraction and transmission electron microscope. The chitosan + CdS QDs exhibited high aqueous solubility with better steadiness. By using chitosan + CdS, the silver ions were not only detected but also reduced to nanosize due to the reducing property of chitosan. The mechanism of fluorescence quenching of chitosan + CdS by Ag+ was investigated using photoluminescence spectroscopy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Zhang, X.-L. Ma, Y. Gu, H. Huang and G.-W. Zhang, Front. Chem., 8, 799 (2020); https://doi.org/10.3389/fchem.2020.00799
- S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
- G. Vinci and M. Rapa, Bioengineering, 6, 10 (2019); https://doi.org/10.3390/bioengineering6010010
- A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front. Chem., 8, 341 (2020); https://doi.org/10.3389/fchem.2020.00341
- N. Kulkarni and U. Muddapur, J. Nanotechnol., 2014, 510246 (2014); https://doi.org/10.1155/2014/510246
- A.B. Sengul and E. Asmatulu, Environ. Chem. Lett., 18, 1659 (2020); https://doi.org/10.1007/s10311-020-01033-6
- Y.-X. Zhang and Y.-H. Wang, RSC Adv., 7, 45129 (2017); https://doi.org/10.1039/C7RA07551K
- V.A. Niraimathee, V. Subha, R.S.E. Ravindran and S. Renganathan, Int. J. Environ. Sustain. Dev., 15, 227 (2016); https://doi.org/10.1504/IJESD.2016.077370
- K. Rurack, M. Kollmannsberger, U. Resch-Genger and J. Daub, J. Am. Chem. Soc., 122, 968 (2000); https://doi.org/10.1021/ja992630a
- Z. Beyene and R. Ghosh, Mater. Today Commun., 21, 100612 (2019); https://doi.org/10.1016/j.mtcomm.2019.100612
- D. Šajinovic, Z.V. Šaponjic, N. Cvjeticanin, M. Marinovic-Cincovic and J.M. Nedeljkovic, Chem. Phys. Lett., 329, 168 (2000); https://doi.org/10.1016/S0009-2614(00)00990-8
- S. Emin, N. Sogoshi, S. Nakabayashi, M. Villeneuve and C. Dushkin, J. Photochem. Photobiol. Chem., 207, 173 (2009); https://doi.org/10.1016/j.jphotochem.2009.07.002
- W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han and S.M. Nie, Biotechnology (Faisalabad), 13, 40 (2002).
- S.K. Vemuri, R.R. Banala, S. Mukherjee, P. Uppula, G.P.V. Subbaiah, G.A.V. Reddy and T. Malarvilli, Mater. Sci. Eng. C-Mater. Biol. Appl., 99, 417 (2019); https://doi.org/10.1016/j.msec.2019.01.123
- H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec and M.G. Bawendi, J. Am. Chem. Soc., 122, 12142 (2000); https://doi.org/10.1021/ja002535y
- W.C.W. Chan and S.C. Nie, Science, 281, 2016 (1998); https://doi.org/10.1126/science.281.5385.2016
- D.E. Moore and K. Patel, Langmuir, 17, 2541 (2001); https://doi.org/10.1021/la001416t
- H. Zhao, E.P. Douglas, B.S. Harrison and K.S. Schanze, Langmuir, 17, 8428 (2001); https://doi.org/10.1021/la011348q
- K. Senthil, D. Mangalaraj and S.K. Narayandass, Appl. Surf. Sci., 169-170, 476 (2001); https://doi.org/10.1016/S0169-4332(00)00732-7
- T. Kippeny, L.A. Swafford and S.J. Rosenthal, J. Chem. Educ., 79, 1094 (2002); https://doi.org/10.1021/ed079p1094
- F.M. Antolini, T. Pentimalli, R. Di Luccio, M. Terzi, M. Schioppa, L. Re, L. Mirenghi and L. Tapfer, Mater. Lett., 59, 3181 (2005); https://doi.org/10.1016/j.matlet.2005.05.047
- H. Wang, P. Fang, Z. Chen and S. Wang, Appl. Surf. Sci., 253, 8495 (2007); https://doi.org/10.1016/j.apsusc.2007.04.020
- J.X. Yao, G.L. Zhao, D. Wang and G.R. Han, Mater. Lett., 59, 3652 (2005); https://doi.org/10.1016/j.matlet.2005.07.005
- D. Wu, X. Ge, Z. Zhang, M.Z. Wang and S.L. Zhang, Langmuir, 20,5192 (2004); https://doi.org/10.1021/la049405d
- Y. Chen and Z. Rosenzweig, Anal. Chem., 74, 5132 (2002); https://doi.org/10.1021/ac0258251
- K.M. Gattas-Asfura and R.M. Leblanc, Chem. Commun., 21, 2684 (2003); https://doi.org/10.1039/B308991F
- J.L. Chen and C.Q. Zhu, Anal. Chim. Acta, 546, 147 (2005); https://doi.org/10.1016/j.aca.2005.05.006
- S.J. Lai, X.J. Chang, Mao, Y. Zhai, N. Lian and H. Zheng, Ann. Chim.,97, 109 (2007); https://doi.org/10.1002/adic.200690080
- B. Krajewska, React. Funct. Polym., 47, 37 (2001); https://doi.org/10.1016/S1381-5148(00)00068-7
- M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001
- T. Chandy and C.P. Sharma, Biomater. Artif. Cells Artif. Organs, 18, 1(1990); https://doi.org/10.3109/10731199009117286
- W. Paul and C.P. Sharma, S.T.P. Pharma Sci., 10, 5 (2000).
- R.A.A. Muzzarelli and C. Muzzarelli, Adv. Polym. Sci., 186, 151 (2005); https://doi.org/10.1007/b136820
- M.N.V. Ravi Kumar, React. Funct. Polym., 46, 1 (2000); https://doi.org/10.1016/S1381-5148(00)00038-9
- J. Dilag, H. Kobus and A.V. Ellis, Forensic Sci. Int., 187, 97 (2009); https://doi.org/10.1016/j.forsciint.2009.03.006
- J. Huang, Y. Yang, B. Yang, S. Liu and J. Shen, Polym. Bull., 36, 337 (1996); https://doi.org/10.1007/BF00319234
- H. Hu, S.-C. Kung, L.-M. Yang, M.E. Nicho and R.M. Penner, Sol. Energy Mater. Sol. Cells, 93, 51 (2009); https://doi.org/10.1016/j.solmat.2008.03.011
- R. Othayoth, P. Mathi, K. Bheemanapally, L. Kakarla and M. Botlagunta, J. Microencapsulation, 32, 578 (2015); https://doi.org/ 10.3109/02652048.2015.1065921
- B.N. Singh, V. Veeresh, S.P. Mallick, Y. Jain, S. Sinha, A. Rastogi and P. Srivastava, Int. J. Biol. Macromol., 133, 817 (2019); https://doi.org/ 10.1016/j.ijbiomac.2019.04.107
- B.N. Singh, V. Veeresh, S.P. Mallick, S. Sinha, A. Rastogi and P. Srivastava, Int. J. Biol. Macromol., 153, 1 (2020); https://doi.org/ 10.1016/j.ijbiomac.2020.02.173
- L. Suresh, P.K. Brahman, K.R. Reddy, and J.S. Bondili, Enzyme Microbial Technol., 112, 43 (2018); https://doi.org/10.1016/j.enzmictec.2017.10.009
References
D. Zhang, X.-L. Ma, Y. Gu, H. Huang and G.-W. Zhang, Front. Chem., 8, 799 (2020); https://doi.org/10.3389/fchem.2020.00799
S. Patil and R. Chandrasekaran, J. Genet. Eng. Biotechnol., 18, 67 (2020); https://doi.org/10.1186/s43141-020-00081-3
G. Vinci and M. Rapa, Bioengineering, 6, 10 (2019); https://doi.org/10.3390/bioengineering6010010
A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar and M.N.M. Ibrahim, Front. Chem., 8, 341 (2020); https://doi.org/10.3389/fchem.2020.00341
N. Kulkarni and U. Muddapur, J. Nanotechnol., 2014, 510246 (2014); https://doi.org/10.1155/2014/510246
A.B. Sengul and E. Asmatulu, Environ. Chem. Lett., 18, 1659 (2020); https://doi.org/10.1007/s10311-020-01033-6
Y.-X. Zhang and Y.-H. Wang, RSC Adv., 7, 45129 (2017); https://doi.org/10.1039/C7RA07551K
V.A. Niraimathee, V. Subha, R.S.E. Ravindran and S. Renganathan, Int. J. Environ. Sustain. Dev., 15, 227 (2016); https://doi.org/10.1504/IJESD.2016.077370
K. Rurack, M. Kollmannsberger, U. Resch-Genger and J. Daub, J. Am. Chem. Soc., 122, 968 (2000); https://doi.org/10.1021/ja992630a
Z. Beyene and R. Ghosh, Mater. Today Commun., 21, 100612 (2019); https://doi.org/10.1016/j.mtcomm.2019.100612
D. Šajinovic, Z.V. Šaponjic, N. Cvjeticanin, M. Marinovic-Cincovic and J.M. Nedeljkovic, Chem. Phys. Lett., 329, 168 (2000); https://doi.org/10.1016/S0009-2614(00)00990-8
S. Emin, N. Sogoshi, S. Nakabayashi, M. Villeneuve and C. Dushkin, J. Photochem. Photobiol. Chem., 207, 173 (2009); https://doi.org/10.1016/j.jphotochem.2009.07.002
W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han and S.M. Nie, Biotechnology (Faisalabad), 13, 40 (2002).
S.K. Vemuri, R.R. Banala, S. Mukherjee, P. Uppula, G.P.V. Subbaiah, G.A.V. Reddy and T. Malarvilli, Mater. Sci. Eng. C-Mater. Biol. Appl., 99, 417 (2019); https://doi.org/10.1016/j.msec.2019.01.123
H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec and M.G. Bawendi, J. Am. Chem. Soc., 122, 12142 (2000); https://doi.org/10.1021/ja002535y
W.C.W. Chan and S.C. Nie, Science, 281, 2016 (1998); https://doi.org/10.1126/science.281.5385.2016
D.E. Moore and K. Patel, Langmuir, 17, 2541 (2001); https://doi.org/10.1021/la001416t
H. Zhao, E.P. Douglas, B.S. Harrison and K.S. Schanze, Langmuir, 17, 8428 (2001); https://doi.org/10.1021/la011348q
K. Senthil, D. Mangalaraj and S.K. Narayandass, Appl. Surf. Sci., 169-170, 476 (2001); https://doi.org/10.1016/S0169-4332(00)00732-7
T. Kippeny, L.A. Swafford and S.J. Rosenthal, J. Chem. Educ., 79, 1094 (2002); https://doi.org/10.1021/ed079p1094
F.M. Antolini, T. Pentimalli, R. Di Luccio, M. Terzi, M. Schioppa, L. Re, L. Mirenghi and L. Tapfer, Mater. Lett., 59, 3181 (2005); https://doi.org/10.1016/j.matlet.2005.05.047
H. Wang, P. Fang, Z. Chen and S. Wang, Appl. Surf. Sci., 253, 8495 (2007); https://doi.org/10.1016/j.apsusc.2007.04.020
J.X. Yao, G.L. Zhao, D. Wang and G.R. Han, Mater. Lett., 59, 3652 (2005); https://doi.org/10.1016/j.matlet.2005.07.005
D. Wu, X. Ge, Z. Zhang, M.Z. Wang and S.L. Zhang, Langmuir, 20,5192 (2004); https://doi.org/10.1021/la049405d
Y. Chen and Z. Rosenzweig, Anal. Chem., 74, 5132 (2002); https://doi.org/10.1021/ac0258251
K.M. Gattas-Asfura and R.M. Leblanc, Chem. Commun., 21, 2684 (2003); https://doi.org/10.1039/B308991F
J.L. Chen and C.Q. Zhu, Anal. Chim. Acta, 546, 147 (2005); https://doi.org/10.1016/j.aca.2005.05.006
S.J. Lai, X.J. Chang, Mao, Y. Zhai, N. Lian and H. Zheng, Ann. Chim.,97, 109 (2007); https://doi.org/10.1002/adic.200690080
B. Krajewska, React. Funct. Polym., 47, 37 (2001); https://doi.org/10.1016/S1381-5148(00)00068-7
M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006); https://doi.org/10.1016/j.progpolymsci.2006.06.001
T. Chandy and C.P. Sharma, Biomater. Artif. Cells Artif. Organs, 18, 1(1990); https://doi.org/10.3109/10731199009117286
W. Paul and C.P. Sharma, S.T.P. Pharma Sci., 10, 5 (2000).
R.A.A. Muzzarelli and C. Muzzarelli, Adv. Polym. Sci., 186, 151 (2005); https://doi.org/10.1007/b136820
M.N.V. Ravi Kumar, React. Funct. Polym., 46, 1 (2000); https://doi.org/10.1016/S1381-5148(00)00038-9
J. Dilag, H. Kobus and A.V. Ellis, Forensic Sci. Int., 187, 97 (2009); https://doi.org/10.1016/j.forsciint.2009.03.006
J. Huang, Y. Yang, B. Yang, S. Liu and J. Shen, Polym. Bull., 36, 337 (1996); https://doi.org/10.1007/BF00319234
H. Hu, S.-C. Kung, L.-M. Yang, M.E. Nicho and R.M. Penner, Sol. Energy Mater. Sol. Cells, 93, 51 (2009); https://doi.org/10.1016/j.solmat.2008.03.011
R. Othayoth, P. Mathi, K. Bheemanapally, L. Kakarla and M. Botlagunta, J. Microencapsulation, 32, 578 (2015); https://doi.org/ 10.3109/02652048.2015.1065921
B.N. Singh, V. Veeresh, S.P. Mallick, Y. Jain, S. Sinha, A. Rastogi and P. Srivastava, Int. J. Biol. Macromol., 133, 817 (2019); https://doi.org/ 10.1016/j.ijbiomac.2019.04.107
B.N. Singh, V. Veeresh, S.P. Mallick, S. Sinha, A. Rastogi and P. Srivastava, Int. J. Biol. Macromol., 153, 1 (2020); https://doi.org/ 10.1016/j.ijbiomac.2020.02.173
L. Suresh, P.K. Brahman, K.R. Reddy, and J.S. Bondili, Enzyme Microbial Technol., 112, 43 (2018); https://doi.org/10.1016/j.enzmictec.2017.10.009