Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis, Texture, Electron Diffraction, Thermal and Optical Properties of Cobalt Doped Arginine Carbon Nanotubes
Corresponding Author(s) : Sarvesh Kumar Shailesh
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
In this work, a simple and viable method of green synthesis of multi-walled cobalt doped arginine carbon nanotubes (CNT’s) by chemical precipitation method using arginine amino acid is reported. The atomic force microscopy confirmed that metal ions present in a branched fashion on the surface of Co-doped arginine CNT’s and the obtained particle with diameter 20 nm well dispersed on the carbon nanotubes. The TEM analysis indicates the interlayer separation between the two adjacent carbon walls is estimated to be about 0.34 nm. The electron diffraction patterns indicate that the tube has nearly identical chirality for all of the concentric graphitic layers, as a zigzag-type MWCNT. The SEM analysis predicted tube like morphology and strain is existed on the surface of the CNTs. The Raman spectra confirmed the armchair (n = 8 to 11) multi-walled nanotubes with this chirality are assigned as a semiconducting type of nanotubes. The thermal property was studied by thermogravimetric analysis, differential thermal analysis and predicted the 27.81 % purity in CNTs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Eur. J., 8, 28 (2002); https://doi.org/10.1002/1521-3765(20020104)8:1<28::AIDCHEM28>3.0.CO;2-B
- S.C. Tsang, Y.K. Chen, P.J.F. Harris and M.L.H. Green, Nature, 372, 159 (1994); https://doi.org/10.1038/372159a0
- E. Dujardin, T.W. Ebbesen, T. Hiura and K. Tanigaki, Science, 265, 1850 (1994); https://doi.org/10.1126/science.265.5180.1850
- H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle and R.H. Friend, Adv. Mater., 11, 1281 (1999); https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AIDADMA1281>3.0.CO;2-6
- M.-F. Yu, J. Eng. Mater. Technol., 126, 271 (2004); https://doi.org/10.1115/1.1755245
- M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn and R. Superfine, Nature, 389, 582 (1997); https://doi.org/10.1038/39282
- M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press (1996).
- G. Hodes, Adv. Mater., 19, 639 (2007); https://doi.org/10.1002/adma.200601173
- T. Tsoufis, A. Tomou, D. Gournis, A.P. Douvalis, I. Panagiotopoulos, B. Kooi, V. Georgakilas, I. Arfaoui and T. Bakas, Thomas, J. Nanosci. Nanotechnol., 8, 5942 (2008); https://doi.org/10.1166/jnn.2008.18366
- V. Georgakilas, V. Tzitzios, D. Gournis and D. Petridis, Chem. Mater., 17, 1613 (2005); https://doi.org/10.1021/cm0483590
- S.J. Liu, C.H. Huang, C.K. Huang and W.S. Hwang, Chem. Commun., 32, 4809 (2009); https://doi.org/10.1039/b908534c
- Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229
- C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi and T. Li, J. Phys. Chem. B, 109, 13857 (2005); https://doi.org/10.1021/jp0516846
- Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003); https://doi.org/10.1002/adma.200390087
- S. Kunze, R. Hohmann, H.-J. Kluge, J. Lantzsch, L. Monz, J. Stenner, K. Stratmann, K. Wendt and K. Zimmer, Z. Phys. D-Atoms Molecules and Clusters, 27, 111 (1993); https://doi.org/10.1007/BF01426757
- B.I. Yakobson, C.J. Brabec and C.J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996); https://doi.org/10.1103/PhysRevLett.76.2511
- M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, Nature, 381, 678 (1996); https://doi.org/10.1038/381678a0
- P.E. Wong, C.M. Sheehan and C.M. Lieber, Science, 277, 1971 (1997); https://doi.org/10.1126/science.277.5334.1971
- M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain and H.A. Goldberg, Graphite Fibers and Filaments, Springer: Berlin, Heidelberg, p. 407 (1998).
- P.G. Collins and K.M. Bradley, Science, 287, 1801 (2000); https://doi.org/10.1126/science.287.5459.1801
- X.P. Tang, A. Kleinhammes, H. Shimoda, L. Fleming, K.Y. Bennoune, C. Bower, O. Zhou and Y. Wu, Science, 288, 492 (2000); https://doi.org/10.1126/science.288.5465.492
- J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, Science, 287, 622 (2000); https://doi.org/10.1126/science.287.5453.622
- I. Brodie and C.A. Spindt, Vacuum Microelectronics, In: Advances in Electronics and Electron Physics, Academic Press: New York, vol. 83, pp. 1-106 (1992).
- J.A. Castellano, Handbook of Display Technology, Academic Press: San Diego, p. 395 (1992).
- A.W. Scott, Understanding Microwaves, Wiley, p. 395 (1993).
- P.J. Britto, K.S.V. Santhanam, A. Rubio, A. Alonso and P.M. Ajayan, Adv. Mater., 11, 154 (1999); https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AIDADMA154>3.0.CO;2-B
- G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998); https://doi.org/10.1038/30694
- J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P.M. Ajayan, J. Am. Chem. Soc., 116, 7935 (1994); https://doi.org/10.1021/ja00096a076
- H. Hong, Y. Zhang, J. Sun and W. Cai, Nano Today, 4, 399 (2009); https://doi.org/10.1016/j.nantod.2009.07.001
- S.K. Shailesh, A.K. Roy and B. Tiwari, Int. J. Mater. Mechan. Manufact., 2, 99 (2014).
- S.K. Shailesh, B. Tiwari, K. Yadav and D. Prakash, Int. J. Metallur. Mater. Sci. Eng., 3, 13 (2013).
References
C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Eur. J., 8, 28 (2002); https://doi.org/10.1002/1521-3765(20020104)8:1<28::AIDCHEM28>3.0.CO;2-B
S.C. Tsang, Y.K. Chen, P.J.F. Harris and M.L.H. Green, Nature, 372, 159 (1994); https://doi.org/10.1038/372159a0
E. Dujardin, T.W. Ebbesen, T. Hiura and K. Tanigaki, Science, 265, 1850 (1994); https://doi.org/10.1126/science.265.5180.1850
H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle and R.H. Friend, Adv. Mater., 11, 1281 (1999); https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AIDADMA1281>3.0.CO;2-6
M.-F. Yu, J. Eng. Mater. Technol., 126, 271 (2004); https://doi.org/10.1115/1.1755245
M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn and R. Superfine, Nature, 389, 582 (1997); https://doi.org/10.1038/39282
M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press (1996).
G. Hodes, Adv. Mater., 19, 639 (2007); https://doi.org/10.1002/adma.200601173
T. Tsoufis, A. Tomou, D. Gournis, A.P. Douvalis, I. Panagiotopoulos, B. Kooi, V. Georgakilas, I. Arfaoui and T. Bakas, Thomas, J. Nanosci. Nanotechnol., 8, 5942 (2008); https://doi.org/10.1166/jnn.2008.18366
V. Georgakilas, V. Tzitzios, D. Gournis and D. Petridis, Chem. Mater., 17, 1613 (2005); https://doi.org/10.1021/cm0483590
S.J. Liu, C.H. Huang, C.K. Huang and W.S. Hwang, Chem. Commun., 32, 4809 (2009); https://doi.org/10.1039/b908534c
Y. Sun and Y. Xia, Science, 298, 2176 (2002); https://doi.org/10.1126/science.1077229
C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi and T. Li, J. Phys. Chem. B, 109, 13857 (2005); https://doi.org/10.1021/jp0516846
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003); https://doi.org/10.1002/adma.200390087
S. Kunze, R. Hohmann, H.-J. Kluge, J. Lantzsch, L. Monz, J. Stenner, K. Stratmann, K. Wendt and K. Zimmer, Z. Phys. D-Atoms Molecules and Clusters, 27, 111 (1993); https://doi.org/10.1007/BF01426757
B.I. Yakobson, C.J. Brabec and C.J. Bernholc, Phys. Rev. Lett., 76, 2511 (1996); https://doi.org/10.1103/PhysRevLett.76.2511
M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson, Nature, 381, 678 (1996); https://doi.org/10.1038/381678a0
P.E. Wong, C.M. Sheehan and C.M. Lieber, Science, 277, 1971 (1997); https://doi.org/10.1126/science.277.5334.1971
M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain and H.A. Goldberg, Graphite Fibers and Filaments, Springer: Berlin, Heidelberg, p. 407 (1998).
P.G. Collins and K.M. Bradley, Science, 287, 1801 (2000); https://doi.org/10.1126/science.287.5459.1801
X.P. Tang, A. Kleinhammes, H. Shimoda, L. Fleming, K.Y. Bennoune, C. Bower, O. Zhou and Y. Wu, Science, 288, 492 (2000); https://doi.org/10.1126/science.288.5465.492
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, Science, 287, 622 (2000); https://doi.org/10.1126/science.287.5453.622
I. Brodie and C.A. Spindt, Vacuum Microelectronics, In: Advances in Electronics and Electron Physics, Academic Press: New York, vol. 83, pp. 1-106 (1992).
J.A. Castellano, Handbook of Display Technology, Academic Press: San Diego, p. 395 (1992).
A.W. Scott, Understanding Microwaves, Wiley, p. 395 (1993).
P.J. Britto, K.S.V. Santhanam, A. Rubio, A. Alonso and P.M. Ajayan, Adv. Mater., 11, 154 (1999); https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AIDADMA154>3.0.CO;2-B
G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature, 393, 346 (1998); https://doi.org/10.1038/30694
J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier and P.M. Ajayan, J. Am. Chem. Soc., 116, 7935 (1994); https://doi.org/10.1021/ja00096a076
H. Hong, Y. Zhang, J. Sun and W. Cai, Nano Today, 4, 399 (2009); https://doi.org/10.1016/j.nantod.2009.07.001
S.K. Shailesh, A.K. Roy and B. Tiwari, Int. J. Mater. Mechan. Manufact., 2, 99 (2014).
S.K. Shailesh, B. Tiwari, K. Yadav and D. Prakash, Int. J. Metallur. Mater. Sci. Eng., 3, 13 (2013).