Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of 5-Hydroxymethylfurfural from Cassava (Manihot utilissima pohl) Peels through Dehydration Reaction using Deep Eutectic Solvent Based on Choline Chloride/Citric Acid
Corresponding Author(s) : R. Manurung
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
The high cellulose content in cassava peel has an opportunity to produce bio-based chemical products in 5-hydroxymethylfurfural (5-HMF) form. This study aimed to determine the optimum conditions of glucose dehydration reaction as a result of hydrolysis of the best cassava peel cellulose. The variables observed in this study were H2SO4 catalyst concentrations in the hydrolysis reaction, temperature and amount of deep eutectic solvents based on choline chloride/citric acid. The optimum dehydration reaction conditions in this study was the glucose:deep eutectic solvents mass ratio of 1:6 at the reaction temperature of 80 ºC. The highest yield of 64.50% at an initial glucose concentration of 5.70% using a 1.5% H2SO4 catalyst during the hydrolysis of cassava peel cellulose. The results obtained in this study indicated that addition of choline chloride/citric acid as deep eutectic solvent can increase the yield of 5-HMF.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Bicker, J. Hirth and H. Vogel, Green Chem., 5, 280 (2003); https://doi.org/10.1039/b211468b
- B. Liu, C. Ba, M. Jin and Z. Zhang, Ind. Crops Prod., 76, 781 (2015); https://doi.org/10.1016/j.indcrop.2015.07.036
- C. Chatterjee, F. Pong and A. Sen, Green Chem., 17, 40 (2015); https://doi.org/10.1039/C4GC01062K
- A.A. Rosatella, S.P. Simeonov, R.F.M. Frade and C.A.M. Afonso, Green Chem., 13, 754 (2011); https://doi.org/10.1039/c0gc00401d
- T.F. Wang, M.W. Nolte and B.H. Shanks, Green Chem., 16, 548 (2014); https://doi.org/10.1039/C3GC41365A
- C. Tian, X. Zhu, S.-H. Chai, Z. Wu, A. Binder, S. Brown, L. Li, H. Luo, Y. Guo and S. Dai, ChemSusChem, 7, 1703 (2014); https://doi.org/10.1002/cssc.201400119
- Z. Abidin, E. Saraswati and T. Naid, Int. J. Pharm. Tech. Res., 6, 974 (2014).
- F. Kemausuor, A. Addo and L. Darkwah, Biotechnol. Res. Int., 2015, 1(2015); https://doi.org/10.1155/2015/828576
- M.K. Thakur, V.K. Thakur, R.K. Gupta and A. Pappu, ACS Sustain. Chem.& Eng., 4, 1 (2016); https://doi.org/10.1021/acssuschemeng.5b01327
- H. Passos, M.G. Freire and J.A.P. Coutinho, Green Chem., 16, 4786 (2014); https://doi.org/10.1039/C4GC00236A
- H. Xie, Z. Zhao and Q. Wang, ChemSusChem, 5, 901 (2012); https://doi.org/10.1002/cssc.201100588
- F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger and B. König, Green Chem., 11, 1948 (2009); https://doi.org/10.1039/b917548m
- R. Manurung, R. Hasibuan and N. Taslim, J. Eng. Appl. Sci., 11, 9962 (2016).
- Z. Maugeri and P.D. de María, RSC Adv., 2, 421 (2012); https://doi.org/10.1039/C1RA00630D
- Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Chem. Soc. Rev., 41, 7108 (2012); https://doi.org/10.1039/c2cs35178a
- Y. Ma, L. Wang, H. Li, T. Wang and R. Zhang, Catalysts, 8, 467 (2018); https://doi.org/10.3390/catal8100467
- R.K. Siongco, B.R. Leron and A.R. Caparang, Thermochim. Acta, 566, 50 (2013); https://doi.org/10.1016/j.tca.2013.05.023
- R. Yusof, E. Abdulmalek, K. Sirat and M. Rahman, Molecules, 19,8011 (2014); https://doi.org/10.3390/molecules19068011
- K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Thermochim. Acta, 515, 67 (2011); https://doi.org/10.1016/j.tca.2010.12.022
- A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli and I.M. AlNashef, J. Clean. Prod., 65, 246 (2014); https://doi.org/10.1016/j.jclepro.2013.08.031
- B.Y. Zhao, X. Pei Xu, F.-X. Yang, H. Wu, M.-H. Zong and W.Y. Lou, Sustainable Chem. Eng., 2015, 2746 (2012); https://doi.org/10.1021/acssuschemeng.5b00619
- S. Erna and I. Abram, J. Akad Kim., 5, 121 (2017); https://doi.org/10.22487/j24775185.2016.v5.i3.8045
- K.C. Saxena and D. Tigote, Int. J. Innov. Sci. Eng. Technol., 2, 55 (2015).
- H. Sarip, M.S. Hossain, M. Azemi and K. Allaf, BioResources, 11, 10625 (2016).
- S. De, S. Dutta and B. Saha, Green Chem., 13, 2859 (2011); https://doi.org/10.1039/c1gc15550d
- M. Matsumiya and T. Hara, Biomass Bioenergy, 72, 227 (2015); https://doi.org/10.1016/j.biombioe.2014.11.001
- D.L. Donald, G.M. Lampman and G.S. Kriz, Introduction to Spectroscopy, Thomson Learning: Washington, Ed.: 3 (2011).
- F. Menegazzo, E. Ghedini and M. Signoretto, Molecules, 23, 2201 (2018); https://doi.org/10.3390/molecules23092201
- A. Verma, S.N. Pandeya and S. Shwewta, Int. J. Res. Ayurveda Pharm., 2, 1110 (2011).
- M. Zuo, Z. Li, Y. Jiang, X. Tang, X. Zeng, Y. Sun and L. Lin, Ind.Crops Prod., 99, 1 (2017); https://doi.org/10.1016/j.indcrop.2017.01.027
- N. Mittal, G.M. Nisola and W.J. Chung, Tetrahedron Lett., 53, 3149 (2012); https://doi.org/10.1016/j.tetlet.2012.04.045
- F. Wang, A.W. Shi, X.X. Qin, C.L. Liu and W.S. Dong, Carbohydr. Res., 346, 982 (2011); https://doi.org/10.1016/j.carres.2011.03.009
- C.P. Li, D. Li, S.S. Zou, Z. Li, J.M. Yin, A.L. Wang, Y.N. Cui, Z.L. Yao and Q. Zhao, Green Chem., 15, 2793 (2013); https://doi.org/10.1039/c3gc41067f
- Q. Jing and X. Lü, Chin. J. Chem. Eng., 16, 890 (2008); https://doi.org/10.1016/S1004-9541(09)60012-4
- O. Levenspiel, Chemical Reaction Engineering, Replika Press Pvt. Ltd: India. Ed. 3, pp 153-154 and 235-236 (1999).
- A.A. Assanosi, M. Farah, J. Wood and B. Al-Duri, RSC Adv., 4, 39359 (2014); https://doi.org/10.1039/C4RA07065H
- M. McKibbins and W. Samuel, Chem. Conv. Wood Residues, 5, 17 (1962).
References
M. Bicker, J. Hirth and H. Vogel, Green Chem., 5, 280 (2003); https://doi.org/10.1039/b211468b
B. Liu, C. Ba, M. Jin and Z. Zhang, Ind. Crops Prod., 76, 781 (2015); https://doi.org/10.1016/j.indcrop.2015.07.036
C. Chatterjee, F. Pong and A. Sen, Green Chem., 17, 40 (2015); https://doi.org/10.1039/C4GC01062K
A.A. Rosatella, S.P. Simeonov, R.F.M. Frade and C.A.M. Afonso, Green Chem., 13, 754 (2011); https://doi.org/10.1039/c0gc00401d
T.F. Wang, M.W. Nolte and B.H. Shanks, Green Chem., 16, 548 (2014); https://doi.org/10.1039/C3GC41365A
C. Tian, X. Zhu, S.-H. Chai, Z. Wu, A. Binder, S. Brown, L. Li, H. Luo, Y. Guo and S. Dai, ChemSusChem, 7, 1703 (2014); https://doi.org/10.1002/cssc.201400119
Z. Abidin, E. Saraswati and T. Naid, Int. J. Pharm. Tech. Res., 6, 974 (2014).
F. Kemausuor, A. Addo and L. Darkwah, Biotechnol. Res. Int., 2015, 1(2015); https://doi.org/10.1155/2015/828576
M.K. Thakur, V.K. Thakur, R.K. Gupta and A. Pappu, ACS Sustain. Chem.& Eng., 4, 1 (2016); https://doi.org/10.1021/acssuschemeng.5b01327
H. Passos, M.G. Freire and J.A.P. Coutinho, Green Chem., 16, 4786 (2014); https://doi.org/10.1039/C4GC00236A
H. Xie, Z. Zhao and Q. Wang, ChemSusChem, 5, 901 (2012); https://doi.org/10.1002/cssc.201100588
F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger and B. König, Green Chem., 11, 1948 (2009); https://doi.org/10.1039/b917548m
R. Manurung, R. Hasibuan and N. Taslim, J. Eng. Appl. Sci., 11, 9962 (2016).
Z. Maugeri and P.D. de María, RSC Adv., 2, 421 (2012); https://doi.org/10.1039/C1RA00630D
Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Chem. Soc. Rev., 41, 7108 (2012); https://doi.org/10.1039/c2cs35178a
Y. Ma, L. Wang, H. Li, T. Wang and R. Zhang, Catalysts, 8, 467 (2018); https://doi.org/10.3390/catal8100467
R.K. Siongco, B.R. Leron and A.R. Caparang, Thermochim. Acta, 566, 50 (2013); https://doi.org/10.1016/j.tca.2013.05.023
R. Yusof, E. Abdulmalek, K. Sirat and M. Rahman, Molecules, 19,8011 (2014); https://doi.org/10.3390/molecules19068011
K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Thermochim. Acta, 515, 67 (2011); https://doi.org/10.1016/j.tca.2010.12.022
A. Hayyan, M.A. Hashim, M. Hayyan, F.S. Mjalli and I.M. AlNashef, J. Clean. Prod., 65, 246 (2014); https://doi.org/10.1016/j.jclepro.2013.08.031
B.Y. Zhao, X. Pei Xu, F.-X. Yang, H. Wu, M.-H. Zong and W.Y. Lou, Sustainable Chem. Eng., 2015, 2746 (2012); https://doi.org/10.1021/acssuschemeng.5b00619
S. Erna and I. Abram, J. Akad Kim., 5, 121 (2017); https://doi.org/10.22487/j24775185.2016.v5.i3.8045
K.C. Saxena and D. Tigote, Int. J. Innov. Sci. Eng. Technol., 2, 55 (2015).
H. Sarip, M.S. Hossain, M. Azemi and K. Allaf, BioResources, 11, 10625 (2016).
S. De, S. Dutta and B. Saha, Green Chem., 13, 2859 (2011); https://doi.org/10.1039/c1gc15550d
M. Matsumiya and T. Hara, Biomass Bioenergy, 72, 227 (2015); https://doi.org/10.1016/j.biombioe.2014.11.001
D.L. Donald, G.M. Lampman and G.S. Kriz, Introduction to Spectroscopy, Thomson Learning: Washington, Ed.: 3 (2011).
F. Menegazzo, E. Ghedini and M. Signoretto, Molecules, 23, 2201 (2018); https://doi.org/10.3390/molecules23092201
A. Verma, S.N. Pandeya and S. Shwewta, Int. J. Res. Ayurveda Pharm., 2, 1110 (2011).
M. Zuo, Z. Li, Y. Jiang, X. Tang, X. Zeng, Y. Sun and L. Lin, Ind.Crops Prod., 99, 1 (2017); https://doi.org/10.1016/j.indcrop.2017.01.027
N. Mittal, G.M. Nisola and W.J. Chung, Tetrahedron Lett., 53, 3149 (2012); https://doi.org/10.1016/j.tetlet.2012.04.045
F. Wang, A.W. Shi, X.X. Qin, C.L. Liu and W.S. Dong, Carbohydr. Res., 346, 982 (2011); https://doi.org/10.1016/j.carres.2011.03.009
C.P. Li, D. Li, S.S. Zou, Z. Li, J.M. Yin, A.L. Wang, Y.N. Cui, Z.L. Yao and Q. Zhao, Green Chem., 15, 2793 (2013); https://doi.org/10.1039/c3gc41067f
Q. Jing and X. Lü, Chin. J. Chem. Eng., 16, 890 (2008); https://doi.org/10.1016/S1004-9541(09)60012-4
O. Levenspiel, Chemical Reaction Engineering, Replika Press Pvt. Ltd: India. Ed. 3, pp 153-154 and 235-236 (1999).
A.A. Assanosi, M. Farah, J. Wood and B. Al-Duri, RSC Adv., 4, 39359 (2014); https://doi.org/10.1039/C4RA07065H
M. McKibbins and W. Samuel, Chem. Conv. Wood Residues, 5, 17 (1962).