Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Developments in the Synthesis and Applications of Metal Organic Framework: A Concise Review
Corresponding Author(s) : Chandan Adhikari
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
Metal organic frameworks (MOFs) are one of those compounds which have drawn attention in various applications due to their several interesting properties like tunable shape, size, pore size, easy functionalization, high surface area, pore volume, etc. Metal organic frameworks due to their uniform structures, tunable porosity, wide variety and stability on various topology, geometry, dimension and chemical functions of the molecular network give a remarkable structural diversity in comparison to other porous materials. This enables scientists to handle numerous framework structures, porosity and functionality effectively. The unique structural architecture and tunable properties of MOF’s makes them an interesting hybrid material consisting of organic and inorganic materials. MOF can be randomly constructed like Lego bricks and superior in terms of versatility in comparisson to other porous materials. A number of MOFs containing a wide variety of metal e.g. zinc, copper, iron, aluminium, magnesium, chromium, zirconium, gadolinium, manganese are gaining rapid growth in commercial markets for gas storage, adsorption, separation and catalytic applications. This concise review emphasizes various synthetic methods e.g. solvothermal process, hydrothermal synthesis, electrochemical synthesis, microwave synthesis, sonochemical synthesis, mechanochemical synthesis, of metal organic framework developed in the last few decades. It also addresses various applications of metal organic framework e.g. hydrogen storage, gas adsorption, drug delivery systems and bioimaging agents, biocatalysts, biosensors, electrochemical sensors, etc. It also comments on various challenges and futuristic applications of metal organic frameworks in various field e.g. liquid wate management, gaseous waste management, sunlight assisted catalysis, water purification, building materials, electronic devices, battery technologies, targeted drug delivery, solar cells, etc. of science and technology in coming decades.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian and B. Chen, Adv. Mater., 28, 8819 (2016); https://doi.org/10.1002/adma.201601133
- H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341,1230444 (2013); https://doi.org/10.1126/science.1230444
- C. McKinstry, R. Cathcart, E. Cussen, A. Fletcher, S. Patwardhan and J. Sefcik, Chem. Eng. J., 285, 718 (2016); https://doi.org/10.1016/j.cej.2015.10.023
- A. Garcia-Marquez, P. Horcajada, D. Grosso, G. Ferey, C. Serre, C. Sanchez and C. Boissiere, Chem. Commun., 49, 3848 (2013); https://doi.org/10.1039/c3cc39191d
- Y. Thi Dang, H.T. Hoang, H.C. Dong, K.-B.T. Bui, L.H.T. Nguyen, T.B. Phan, Y. Kawazoe and T.L.H. Doan, Micropor. Mesopor. Mater., 298, 110064 (2020); https://doi.org/10.1016/j.micromeso.2020.110064
- N.M. Mahmoodi, M. Oveisi, A. Panahdar, B. Hayati and K. Nasiri, Mater. Chem. Phys., 243, 122572 (2020); https://doi.org/10.1016/j.matchemphys.2019.122572
- M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy and H. Garcia, Angew. Chem. Int. Ed., 58, 15188 (2019); https://doi.org/10.1002/anie.201902229
- S.S. Nadar, L. Vaidya, S. Maurya and V.K. Rathod, Coord. Chem. Rev., 396, 1 (2019); https://doi.org/10.1016/j.ccr.2019.05.011
- T. Rajkumar, D. Kukkar, K.-H. Kim, J.R. Sohn and A. Deep, J. Ind. Eng. Chem., 72, 50 (2019); https://doi.org/10.1016/j.jiec.2018.12.048
- Y. Shi, A.-F. Yang, C.-S. Cao and B. Zhao, Coord. Chem. Rev., 390, 50 (2019); https://doi.org/10.1016/j.ccr.2019.03.012
- M.R. di Nunzio, E. Caballero-Mancebo, B. Cohen and A. Douhal, J. Photochem. Photobiol. Photochem. Rev., 44, 100355 (2020); https://doi.org/10.1016/j.jphotochemrev.2020.100355
- R. Aniruddha, I. Sreedhar and B.M. Reddy, J. CO2 Util., 42, 101297 (2020); https://doi.org/10.1016/j.jcou.2020.101297
- A.V. Desai, S. Sharma, S. Let and S.K. Ghosh, Coord. Chem. Rev., 395, 146 (2019); https://doi.org/10.1016/j.ccr.2019.05.020
- Y. Li, Z. Fu and G. Xu, Coord. Chem. Rev., 388, 79 (2019); https://doi.org/10.1016/j.ccr.2019.02.033
- J. Shi, J. Zhang, D. Tan, X. Cheng, X. Tan, B. Zhang, B. Han, L. Liu, F. Zhang, M. Liu and J. Xiang, ChemCatChem, 11, 2058 (2019); https://doi.org/10.1002/cctc.201900124
- M.S. Biserèic, B. Marjanovic, B.N. Vasiljevic, S. Mentus, B.A. Zasoñska and G. Ciric-Marjanovic, Micropor. Mesopor. Mater., 278, 23 (2019); https://doi.org/10.1016/j.micromeso.2018.11.005
- C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan and J. Sefcik, Chem. Eng. J., 285, 718 (2016); https://doi.org/10.1016/j.cej.2015.10.023
- S.H. Feng and G.H. Li, Eds.: R. Xu and Y. Xu, Hydrothermal and Solvothermal Syntheses, Elsevier: Amsterdam, Chap. 4 p. 73 (2017).
- Y.-R. Lee, J. Kim and W.-S. Ahn, Korean J. Chem. Eng., 30, 1667 (2013); https://doi.org/10.1007/s11814-013-0140-6
- M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi and M. Khatami, Trends Analyt. Chem., 118, 401 (2019); https://doi.org/10.1016/j.trac.2019.06.007
- O.M. Yaghi and H. Li, J. Am. Chem. Soc., 117, 10401 (1995); https://doi.org/10.1021/ja00146a033
- Y. Liang, W.-G. Yuan, S.-F. Zhang, Z. He, J. Xue, X. Zhang, L.-H. Jing and D.-B. Qin, Dalton Trans., 45, 1382 (2016); https://doi.org/10.1039/C5DT03658E
- W. Chen, L. Du and C. Wu, Ed.: M. Mozafari, Hydrothermal Synthesis of MOFs, Woodhead Publishing, Chap. 7, p. 141 (2020).
- J. Vehrenberg, M. Vepsäläinen, D.S. Macedo, M. Rubio-Martinez, N.A.S. Webster and M. Wessling, Micropor. Mesopor. Mater., 303, 110218 (2020); https://doi.org/10.1016/j.micromeso.2020.110218
- A. Ghoorchian, A. Afkhami, T. Madrakian and M. Ahmadi, Ed.: M. Mozafari, Electrochemical Synthesis of MOFs, Woodhead Publishing, Chap. 9, p. 177 (2020).
- D. Skoda, T. Kazda, L. Munster, B. Hanulikova, A. Styskalik, P. Eloy, D.P. Debecker, J. Vilcakova, O. Cech, L. Simonikova, V. Kanicky and I. Kuritka, J. Energy Storage., 27, 101113 (2020); https://doi.org/10.1016/j.est.2019.101113
- R.F. Mendes, J. Rocha and F. A. Almeida-Paz, Ed.: M. Mozafari, Microwave Synthesis of MOFs, Woodhead Publishing, Chap. 8, p. 159 (2020).
- S.A.A. Razavi and A. Morsali, Chem. Eur. J., 25, 10876 (2019); https://doi.org/10.1002/chem.201901554
- C. Vaitsis, G. Sourkouni and C. Argirusis, Ed.: M. Mozafari, Sonochemical Synthesis of MOFs, Woodhead Publishing, Chap. 11, p. 223 (2020).
- C. Vaitsis, G. Sourkouni and C. Argirusis, Ultrason. Sonochem., 52, 106 (2019); https://doi.org/10.1016/j.ultsonch.2018.11.004
- B. Szczêsniak, S. Borysiuk, J. Choma and M. Jaroniec, Mater. Horiz., 7, 1457 (2020); https://doi.org/10.1039/D0MH00081G
- S. Tanaka, Ed.: M. Mozafari, Mechanochemical Synthesis of MOFs, Woodhead Publishing, Chap. 10, pp. 197 (2020).
- D. Chen, J. Zhao, P. Zhang and S. Dai, Polyhedron, 162, 59 (2019); https://doi.org/10.1016/j.poly.2019.01.024
- L.F. Chanchetti, D.R. Leiva, L.I. Lopes de Faria and T.T. Ishikawa, Int. J. Hydrogen Energy, 45, 5356 (2020); https://doi.org/10.1016/j.ijhydene.2019.06.093
- Z. Mai and D. Liu, Cryst. Growth Des., 19, 7439 (2019); https://doi.org/10.1021/acs.cgd.9b00879
- L. Zou and H.-C. Zhou, Eds.: Y.-P. Chen, S. Bashir and J.L. Liu, Hydrogen Storage in Metal-Organic Frameworks, Springer: Berlin Heidelberg, p. 143 (2017).
- X.-J. Hu, X.-J. Hu, X. Wang, Y.-P. Chen, D.-H. Liu, T.-F. Liu, X. Wang, Y.-P. Chen, D.-H. Liu and T.-F. Liu, General Chem., 4, 180006 (2018); https://doi.org/10.21127/yaoyigc20180006
- P. Llewellyn, G. Maurin and J. Rouquerol, Ed.: F.R.R.S.W.S.L. Maurin, Adsorption by Metal-Organic Frameworks, In: Adsorption by Powders and Porous Solids, Academic Press: Oxford, Eds. 2, pp 565-610 (2014).
- T. Glover and B. Mu, Gas Adsorption in Metal-Organic Frameworks: Fundamentals and Applications, CRC Press (2018).
- M.-X. Wu and Y.-W. Yang, Adv. Mater., 29, 1606134 (2017); https://doi.org/10.1002/adma.201606134
- W. Cai, J. Wang, C. Chu, W. Chen, C. Wu and G. Liu, Adv. Sci., 6, 1801526 (2019); https://doi.org/10.1002/advs.201801526
- B. Illes, P. Hirschle, S. Barnert, V. Cauda, S. Wuttke and H. Engelke, Chem. Mater., 29, 8042 (2017); https://doi.org/10.1021/acs.chemmater.7b02358
- C. Adhikari, A. Das and A. Chakraborty, Mol. Pharm., 12, 3158 (2015); https://doi.org/10.1021/acs.molpharmaceut.5b00043
- C. Adhikari and A. Chakraborty, ChemPhysChem, 17, 1070 (2016); https://doi.org/10.1002/cphc.201501012
- C. Adhikari, A. Mishra, D. Nayak and A. Chakraborty, J. Drug Deliv. Sci. Technol., 47, 1 (2018); https://doi.org/10.1016/j.jddst.2018.06.015
- K.S. Butler, C.J. Pearce, E.A. Nail, G.A. Vincent and D.F. Sava Gallis, ACS Appl. Mater. Interfaces, 12, 31217 (2020); https://doi.org/10.1021/acsami.0c07835
- C. Yang, K. Chen, M. Chen, X. Hu, S.-Y. Huan, L. Chen, G. Song and X.-B. Zhang, Anal. Chem., 91, 2727 (2019); https://doi.org/10.1021/acs.analchem.8b04405
- D.F. Sava Gallis, L.E.S. Rohwer, M.A. Rodriguez, M.C. BarnhartDailey, K.S. Butler, T.S. Luk, J.A. Timlin and K.W. Chapman, ACS Appl. Mater. Interfaces, 9, 22268 (2017); https://doi.org/10.1021/acsami.7b05859
- U. Ryu, J. Yoo, W. Kwon and K.M. Choi, Inorg. Chem., 56, 12859 (2017); https://doi.org/10.1021/acs.inorgchem.7b01684
- Z. Zhang, W. Sang, L. Xie and Y. Dai, Coord. Chem. Rev., 399, 213022 (2019); https://doi.org/10.1016/j.ccr.2019.213022
- Y. Song, J. Yang, L. Wang and Z. Xie, ChemMedChem, 15, 416 (2020); https://doi.org/10.1002/cmdc.201900664
- M. Zhang, Y. Gao, L. Han, N. Zhu and X. Gao, New J. Chem., 44, 18303 (2020); https://doi.org/10.1039/D0NJ04463F
- J. Liu, Z. Guo and K. Liang, Adv. Funct. Mater., 29, 1905321 (2019); https://doi.org/10.1002/adfm.201905321
- W.-H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq and I. Willner, Nature Catal., 1, 689 (2018); https://doi.org/10.1038/s41929-018-0117-2
- J. Liang and K. Liang, Adv. Funct. Mater., 30, 2001648 (2020); https://doi.org/10.1002/adfm.202001648
- J. Navarro-Sánchez, N. Almora-Barrios, B. Lerma-Berlanga, J.J. RuizPernía, V.A. Lorenz-Fonfria, I. Tuñón and C. Martí-Gastaldo, Chem. Sci., 10, 4082 (2019); https://doi.org/10.1039/C9SC00082H
- D. Wang, D. Jana and Y. Zhao, Acc. Chem. Res., 53, 1389 (2020); https://doi.org/10.1021/acs.accounts.0c00268
- R.F. Mendes, F. Figueira, J.P. Leite, L. Gales and F.A. Almeida-Paz, Chem. Soc. Rev., 49, 9121 (2020); https://doi.org/10.1039/D0CS00883D
- W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen, W. Gu, D. Du, Y. Lin and C. Zhu, ACS Appl. Mater. Interface, 11, 22096 (2019); https://doi.org/10.1021/acsami.9b03004
- L. Ai, L. Li, C. Zhang, J. Fu and J. Jiang, Chem. Eur. J., 19, 15105 (2013); https://doi.org/10.1002/chem.201303051
- D.I. Osman, S.M. El-Sheikh, S.M. Sheta, O.I. Ali, A.M. Salem, W.G. Shousha, S.F. El-Khamisy and S.M. Shawky, Biosens. Bioelectron., 141, 111451 (2019); https://doi.org/10.1016/j.bios.2019.111451
- H.-S. Wang, Coord. Chem. Rev., 349, 139 (2017); https://doi.org/10.1016/j.ccr.2017.08.015
- N. Zhou, F. Su, C. Guo, L. He, Z. Jia, M. Wang, Q. Jia, Z. Zhang and S. Lu, Biosens. Bioelectron., 123, 51 (2019); https://doi.org/10.1016/j.bios.2018.09.079
- C.-S. Liu, Z.-H. Zhang, M. Chen, H. Zhao, F.-H. Duan, D.-M. Chen, M.-H. Wang, S. Zhang and M. Du, Chem. Commun., 53, 3941 (2017); https://doi.org/10.1039/C7CC00029D
- N. Bhardwaj, S.K. Bhardwaj, J. Mehta, K.-H. Kim and A. Deep, ACS Appl. Mater. Interface, 9, 33589 (2017) https://doi.org/10.1021/acsami.7b07818
- A. Gupta, S.K. Bhardwaj, A.L. Sharma, K.-H. Kim and A. Deep, Environ. Res., 171, 395 (2019); https://doi.org/10.1016/j.envres.2019.01.049
- T. Ma, H. Li, J.G. Ma and P. Cheng, Dalton Trans., 49, 17121 (2020); https://doi.org/10.1039/D0DT03388J
- L. Liu, Y. Zhou, S. Liu and M. Xu, ChemElectroChem, 5, 6 (2018); https://doi.org/10.1002/celc.201700931
- S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan and K.-H. Kim, Coord. Chem. Rev., 357, 105 (2018); https://doi.org/10.1016/j.ccr.2017.11.028
- J. Qin, M. Cho and Y. Lee, ACS Appl. Mater. Interfaces, 11, 11743 (2019); https://doi.org/10.1021/acsami.8b21425
- L. Yang, C. Xu, W. Ye and W. Liu, Sens. Actuators B Chem., 215, 489 (2015); https://doi.org/10.1016/j.snb.2015.03.104
- Y. Song, X. Li, L. Sun and L. Wang, RSC Adv., 5, 7267 (2015); https://doi.org/10.1039/C4RA12273A
- R. Noll, Laser-Induced Breakdown Spectroscopy, In: Laser-Induced Breakdown Spectroscopy, Springer: Berlin, Heidelberg, pp 7-15 (2012).
References
B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian and B. Chen, Adv. Mater., 28, 8819 (2016); https://doi.org/10.1002/adma.201601133
H. Furukawa, K.E. Cordova, M. O’Keeffe and O.M. Yaghi, Science, 341,1230444 (2013); https://doi.org/10.1126/science.1230444
C. McKinstry, R. Cathcart, E. Cussen, A. Fletcher, S. Patwardhan and J. Sefcik, Chem. Eng. J., 285, 718 (2016); https://doi.org/10.1016/j.cej.2015.10.023
A. Garcia-Marquez, P. Horcajada, D. Grosso, G. Ferey, C. Serre, C. Sanchez and C. Boissiere, Chem. Commun., 49, 3848 (2013); https://doi.org/10.1039/c3cc39191d
Y. Thi Dang, H.T. Hoang, H.C. Dong, K.-B.T. Bui, L.H.T. Nguyen, T.B. Phan, Y. Kawazoe and T.L.H. Doan, Micropor. Mesopor. Mater., 298, 110064 (2020); https://doi.org/10.1016/j.micromeso.2020.110064
N.M. Mahmoodi, M. Oveisi, A. Panahdar, B. Hayati and K. Nasiri, Mater. Chem. Phys., 243, 122572 (2020); https://doi.org/10.1016/j.matchemphys.2019.122572
M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy and H. Garcia, Angew. Chem. Int. Ed., 58, 15188 (2019); https://doi.org/10.1002/anie.201902229
S.S. Nadar, L. Vaidya, S. Maurya and V.K. Rathod, Coord. Chem. Rev., 396, 1 (2019); https://doi.org/10.1016/j.ccr.2019.05.011
T. Rajkumar, D. Kukkar, K.-H. Kim, J.R. Sohn and A. Deep, J. Ind. Eng. Chem., 72, 50 (2019); https://doi.org/10.1016/j.jiec.2018.12.048
Y. Shi, A.-F. Yang, C.-S. Cao and B. Zhao, Coord. Chem. Rev., 390, 50 (2019); https://doi.org/10.1016/j.ccr.2019.03.012
M.R. di Nunzio, E. Caballero-Mancebo, B. Cohen and A. Douhal, J. Photochem. Photobiol. Photochem. Rev., 44, 100355 (2020); https://doi.org/10.1016/j.jphotochemrev.2020.100355
R. Aniruddha, I. Sreedhar and B.M. Reddy, J. CO2 Util., 42, 101297 (2020); https://doi.org/10.1016/j.jcou.2020.101297
A.V. Desai, S. Sharma, S. Let and S.K. Ghosh, Coord. Chem. Rev., 395, 146 (2019); https://doi.org/10.1016/j.ccr.2019.05.020
Y. Li, Z. Fu and G. Xu, Coord. Chem. Rev., 388, 79 (2019); https://doi.org/10.1016/j.ccr.2019.02.033
J. Shi, J. Zhang, D. Tan, X. Cheng, X. Tan, B. Zhang, B. Han, L. Liu, F. Zhang, M. Liu and J. Xiang, ChemCatChem, 11, 2058 (2019); https://doi.org/10.1002/cctc.201900124
M.S. Biserèic, B. Marjanovic, B.N. Vasiljevic, S. Mentus, B.A. Zasoñska and G. Ciric-Marjanovic, Micropor. Mesopor. Mater., 278, 23 (2019); https://doi.org/10.1016/j.micromeso.2018.11.005
C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan and J. Sefcik, Chem. Eng. J., 285, 718 (2016); https://doi.org/10.1016/j.cej.2015.10.023
S.H. Feng and G.H. Li, Eds.: R. Xu and Y. Xu, Hydrothermal and Solvothermal Syntheses, Elsevier: Amsterdam, Chap. 4 p. 73 (2017).
Y.-R. Lee, J. Kim and W.-S. Ahn, Korean J. Chem. Eng., 30, 1667 (2013); https://doi.org/10.1007/s11814-013-0140-6
M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi and M. Khatami, Trends Analyt. Chem., 118, 401 (2019); https://doi.org/10.1016/j.trac.2019.06.007
O.M. Yaghi and H. Li, J. Am. Chem. Soc., 117, 10401 (1995); https://doi.org/10.1021/ja00146a033
Y. Liang, W.-G. Yuan, S.-F. Zhang, Z. He, J. Xue, X. Zhang, L.-H. Jing and D.-B. Qin, Dalton Trans., 45, 1382 (2016); https://doi.org/10.1039/C5DT03658E
W. Chen, L. Du and C. Wu, Ed.: M. Mozafari, Hydrothermal Synthesis of MOFs, Woodhead Publishing, Chap. 7, p. 141 (2020).
J. Vehrenberg, M. Vepsäläinen, D.S. Macedo, M. Rubio-Martinez, N.A.S. Webster and M. Wessling, Micropor. Mesopor. Mater., 303, 110218 (2020); https://doi.org/10.1016/j.micromeso.2020.110218
A. Ghoorchian, A. Afkhami, T. Madrakian and M. Ahmadi, Ed.: M. Mozafari, Electrochemical Synthesis of MOFs, Woodhead Publishing, Chap. 9, p. 177 (2020).
D. Skoda, T. Kazda, L. Munster, B. Hanulikova, A. Styskalik, P. Eloy, D.P. Debecker, J. Vilcakova, O. Cech, L. Simonikova, V. Kanicky and I. Kuritka, J. Energy Storage., 27, 101113 (2020); https://doi.org/10.1016/j.est.2019.101113
R.F. Mendes, J. Rocha and F. A. Almeida-Paz, Ed.: M. Mozafari, Microwave Synthesis of MOFs, Woodhead Publishing, Chap. 8, p. 159 (2020).
S.A.A. Razavi and A. Morsali, Chem. Eur. J., 25, 10876 (2019); https://doi.org/10.1002/chem.201901554
C. Vaitsis, G. Sourkouni and C. Argirusis, Ed.: M. Mozafari, Sonochemical Synthesis of MOFs, Woodhead Publishing, Chap. 11, p. 223 (2020).
C. Vaitsis, G. Sourkouni and C. Argirusis, Ultrason. Sonochem., 52, 106 (2019); https://doi.org/10.1016/j.ultsonch.2018.11.004
B. Szczêsniak, S. Borysiuk, J. Choma and M. Jaroniec, Mater. Horiz., 7, 1457 (2020); https://doi.org/10.1039/D0MH00081G
S. Tanaka, Ed.: M. Mozafari, Mechanochemical Synthesis of MOFs, Woodhead Publishing, Chap. 10, pp. 197 (2020).
D. Chen, J. Zhao, P. Zhang and S. Dai, Polyhedron, 162, 59 (2019); https://doi.org/10.1016/j.poly.2019.01.024
L.F. Chanchetti, D.R. Leiva, L.I. Lopes de Faria and T.T. Ishikawa, Int. J. Hydrogen Energy, 45, 5356 (2020); https://doi.org/10.1016/j.ijhydene.2019.06.093
Z. Mai and D. Liu, Cryst. Growth Des., 19, 7439 (2019); https://doi.org/10.1021/acs.cgd.9b00879
L. Zou and H.-C. Zhou, Eds.: Y.-P. Chen, S. Bashir and J.L. Liu, Hydrogen Storage in Metal-Organic Frameworks, Springer: Berlin Heidelberg, p. 143 (2017).
X.-J. Hu, X.-J. Hu, X. Wang, Y.-P. Chen, D.-H. Liu, T.-F. Liu, X. Wang, Y.-P. Chen, D.-H. Liu and T.-F. Liu, General Chem., 4, 180006 (2018); https://doi.org/10.21127/yaoyigc20180006
P. Llewellyn, G. Maurin and J. Rouquerol, Ed.: F.R.R.S.W.S.L. Maurin, Adsorption by Metal-Organic Frameworks, In: Adsorption by Powders and Porous Solids, Academic Press: Oxford, Eds. 2, pp 565-610 (2014).
T. Glover and B. Mu, Gas Adsorption in Metal-Organic Frameworks: Fundamentals and Applications, CRC Press (2018).
M.-X. Wu and Y.-W. Yang, Adv. Mater., 29, 1606134 (2017); https://doi.org/10.1002/adma.201606134
W. Cai, J. Wang, C. Chu, W. Chen, C. Wu and G. Liu, Adv. Sci., 6, 1801526 (2019); https://doi.org/10.1002/advs.201801526
B. Illes, P. Hirschle, S. Barnert, V. Cauda, S. Wuttke and H. Engelke, Chem. Mater., 29, 8042 (2017); https://doi.org/10.1021/acs.chemmater.7b02358
C. Adhikari, A. Das and A. Chakraborty, Mol. Pharm., 12, 3158 (2015); https://doi.org/10.1021/acs.molpharmaceut.5b00043
C. Adhikari and A. Chakraborty, ChemPhysChem, 17, 1070 (2016); https://doi.org/10.1002/cphc.201501012
C. Adhikari, A. Mishra, D. Nayak and A. Chakraborty, J. Drug Deliv. Sci. Technol., 47, 1 (2018); https://doi.org/10.1016/j.jddst.2018.06.015
K.S. Butler, C.J. Pearce, E.A. Nail, G.A. Vincent and D.F. Sava Gallis, ACS Appl. Mater. Interfaces, 12, 31217 (2020); https://doi.org/10.1021/acsami.0c07835
C. Yang, K. Chen, M. Chen, X. Hu, S.-Y. Huan, L. Chen, G. Song and X.-B. Zhang, Anal. Chem., 91, 2727 (2019); https://doi.org/10.1021/acs.analchem.8b04405
D.F. Sava Gallis, L.E.S. Rohwer, M.A. Rodriguez, M.C. BarnhartDailey, K.S. Butler, T.S. Luk, J.A. Timlin and K.W. Chapman, ACS Appl. Mater. Interfaces, 9, 22268 (2017); https://doi.org/10.1021/acsami.7b05859
U. Ryu, J. Yoo, W. Kwon and K.M. Choi, Inorg. Chem., 56, 12859 (2017); https://doi.org/10.1021/acs.inorgchem.7b01684
Z. Zhang, W. Sang, L. Xie and Y. Dai, Coord. Chem. Rev., 399, 213022 (2019); https://doi.org/10.1016/j.ccr.2019.213022
Y. Song, J. Yang, L. Wang and Z. Xie, ChemMedChem, 15, 416 (2020); https://doi.org/10.1002/cmdc.201900664
M. Zhang, Y. Gao, L. Han, N. Zhu and X. Gao, New J. Chem., 44, 18303 (2020); https://doi.org/10.1039/D0NJ04463F
J. Liu, Z. Guo and K. Liang, Adv. Funct. Mater., 29, 1905321 (2019); https://doi.org/10.1002/adfm.201905321
W.-H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq and I. Willner, Nature Catal., 1, 689 (2018); https://doi.org/10.1038/s41929-018-0117-2
J. Liang and K. Liang, Adv. Funct. Mater., 30, 2001648 (2020); https://doi.org/10.1002/adfm.202001648
J. Navarro-Sánchez, N. Almora-Barrios, B. Lerma-Berlanga, J.J. RuizPernía, V.A. Lorenz-Fonfria, I. Tuñón and C. Martí-Gastaldo, Chem. Sci., 10, 4082 (2019); https://doi.org/10.1039/C9SC00082H
D. Wang, D. Jana and Y. Zhao, Acc. Chem. Res., 53, 1389 (2020); https://doi.org/10.1021/acs.accounts.0c00268
R.F. Mendes, F. Figueira, J.P. Leite, L. Gales and F.A. Almeida-Paz, Chem. Soc. Rev., 49, 9121 (2020); https://doi.org/10.1039/D0CS00883D
W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen, W. Gu, D. Du, Y. Lin and C. Zhu, ACS Appl. Mater. Interface, 11, 22096 (2019); https://doi.org/10.1021/acsami.9b03004
L. Ai, L. Li, C. Zhang, J. Fu and J. Jiang, Chem. Eur. J., 19, 15105 (2013); https://doi.org/10.1002/chem.201303051
D.I. Osman, S.M. El-Sheikh, S.M. Sheta, O.I. Ali, A.M. Salem, W.G. Shousha, S.F. El-Khamisy and S.M. Shawky, Biosens. Bioelectron., 141, 111451 (2019); https://doi.org/10.1016/j.bios.2019.111451
H.-S. Wang, Coord. Chem. Rev., 349, 139 (2017); https://doi.org/10.1016/j.ccr.2017.08.015
N. Zhou, F. Su, C. Guo, L. He, Z. Jia, M. Wang, Q. Jia, Z. Zhang and S. Lu, Biosens. Bioelectron., 123, 51 (2019); https://doi.org/10.1016/j.bios.2018.09.079
C.-S. Liu, Z.-H. Zhang, M. Chen, H. Zhao, F.-H. Duan, D.-M. Chen, M.-H. Wang, S. Zhang and M. Du, Chem. Commun., 53, 3941 (2017); https://doi.org/10.1039/C7CC00029D
N. Bhardwaj, S.K. Bhardwaj, J. Mehta, K.-H. Kim and A. Deep, ACS Appl. Mater. Interface, 9, 33589 (2017) https://doi.org/10.1021/acsami.7b07818
A. Gupta, S.K. Bhardwaj, A.L. Sharma, K.-H. Kim and A. Deep, Environ. Res., 171, 395 (2019); https://doi.org/10.1016/j.envres.2019.01.049
T. Ma, H. Li, J.G. Ma and P. Cheng, Dalton Trans., 49, 17121 (2020); https://doi.org/10.1039/D0DT03388J
L. Liu, Y. Zhou, S. Liu and M. Xu, ChemElectroChem, 5, 6 (2018); https://doi.org/10.1002/celc.201700931
S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan and K.-H. Kim, Coord. Chem. Rev., 357, 105 (2018); https://doi.org/10.1016/j.ccr.2017.11.028
J. Qin, M. Cho and Y. Lee, ACS Appl. Mater. Interfaces, 11, 11743 (2019); https://doi.org/10.1021/acsami.8b21425
L. Yang, C. Xu, W. Ye and W. Liu, Sens. Actuators B Chem., 215, 489 (2015); https://doi.org/10.1016/j.snb.2015.03.104
Y. Song, X. Li, L. Sun and L. Wang, RSC Adv., 5, 7267 (2015); https://doi.org/10.1039/C4RA12273A
R. Noll, Laser-Induced Breakdown Spectroscopy, In: Laser-Induced Breakdown Spectroscopy, Springer: Berlin, Heidelberg, pp 7-15 (2012).