Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth, Experimental Studies and DFT Calculations on Gallic acid 5-Nitrouracilate Single Crystals for Non-linear Optical Applications
Corresponding Author(s) : M.E. Raja Saravanan
Asian Journal of Chemistry,
Vol. 33 No. 5 (2021): Vol 33 Issue 5, 2021
Abstract
The growth and characterization of gallic acid 5-nitrouracilate (GA5NU) single crystals were grown using slow evaporation solution growth technique at room temperature. Single crystal XRD analysis revealed that the grown crystal belongs to monoclinic crystal system. HOMO-LUMO and molecular electrostatic potential (MEP) has been visualized and analyzed. The presence of various functional groups present in the host material was examined using FTIR spectra. Mechanical stability of the grown crystal is validated using Vickers microhardness study and the grown crystal belongs to soft material category. Various hardness parameters like fracture toughness, brittleness index, elastic stiffness constant, tensile strength and other hardness parameters were also calculated. Thermal stability of the grown crystal was also determined. The second harmonic generation (SHG) efficacy of grown crystal was 2.97 times higher than potassium dihydrogen phosphate (KDP), which makes the grown crystal as suitable candidate material for non-linear optical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Sharipova and A.A. Kalinin, Chem. Heterocycl. Comp., 53, 36 (2017); https://doi.org/10.1007/s10593-017-2017-9
- A. Driessen, Nonlinear Optics for the Information Society, Springer (2007).
- S. Kiokias, C. Proestos and V. Oreopoulou, Foods, 9, 534 (2020); https://doi.org/10.3390/foods9040534
- B. Badhani, N. Sharma and R. Kakkar, RSC Adv., 5, 27540 (2015); https://doi.org/10.1039/C5RA01911G
- M. Daglia, A. Di Lorenzo, S.F. Nabavi, Z.S. Talas and S.M. Nabavi, Curr. Pharm. Biotechnol., 15, 362 (2014); https://doi.org/10.2174/138920101504140825120737
- S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma and V. Beniwal, Mini-Rev. Med. Chem., 18, 1283 (2018); https://doi.org/10.2174/1389557518666180330114010
- R. Kaur, S. Cherukuvada, P.B. Managutti and T.N.G. Row, CrystEngComm, 18, 3191 (2016); https://doi.org/10.1039/C5CE01965F
- K.L. Jyothi, R. Gautam, D. Swain, T.N. Guru Row and N.K. Lokanath, Cryst. Res. Technol., 54, 1900016 (2019); https://doi.org/10.1002/crat.201900016
- R.M. Shaker, M.A. Elrady and K.U. Sadek, Mol. Divers., 20, 153 (2016); https://doi.org/10.1007/s11030-015-9595-1
- E. Colacino, G. Sindona, G. Gosselin and C. Mathé, Nucleos., Nucleot. Nucleic Acids, 22, 2013 (2003); https://doi.org/10.1081/NCN-120026403
- P.S.L. Mageshwari, R. Priya, S. Krishnan, V. Joseph and S.J. Das, Opt. Laser Technol., 85, 66 (2016); https://doi.org/10.1016/j.optlastec.2016.06.002
- S. Krishnan, C.J. Raj, R. Robert, A. Ramanand and S.J. Das, Cryst. Res. Technol., 42, 1087 (2007); https://doi.org/10.1002/crat.200710981
- D.A. Kumar, R.S. Babu and S. Kalainatha, Opt. Mater., 109, 110286 (2020); https://doi.org/10.1016/j.optmat.2020.110286
- W.A. Wooster, Rep. Prog. Phys., 16, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302
- M.P. Nancy, J.R. Priya and J.M. Linet, J. Mater. Sci. Mater. Electron., 31, 8144 (2020); https://doi.org/10.1007/s10854-020-03265-2
- D. Sivavishnu, R. Srineevasan and J. Johnson, Mater. Sci. Energy Technol., 1, 205 (2018); https://doi.org/10.1016/j.mset.2018.08.004
- J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan and P. Ramasamy, Appl. Phys., A Mater. Sci. Process., 126, 888 (2020); https://doi.org/10.1007/s00339-020-04077-1
- K. Senthil, K. Elangovan, A. Senthil and G. Vinitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 247, 119063 (2021); https://doi.org/10.1016/j.saa.2020.119063
- T.H. Wang, L. Cao, D. Zhong, J. Liu, F. Teng, S. Ji, S. Sun, J. Tang and B. Teng, CrystEngComm, 21, 2754 (2019); https://doi.org/10.1039/C9CE00150F
- R. Kalaivanan and K. Srinivasan, Opt. Laser Technol., 90, 27 (2017); https://doi.org/10.1016/j.optlastec.2016.11.001
- S. Delphine, A.R.S.J. Rani Juliet, S. Janarthanan and R.S. Samuel, Opt. Laser Technol., 90, 133 (2017); https://doi.org/10.1016/j.optlastec.2016.11.013
- T. Dhanabal, G. Amirthaganesan, M. Dhandapani and S.K. Das, J. Chem. Sci., 124, 951 (2012); https://doi.org/10.1007/s12039-012-0289-2
References
S.M. Sharipova and A.A. Kalinin, Chem. Heterocycl. Comp., 53, 36 (2017); https://doi.org/10.1007/s10593-017-2017-9
A. Driessen, Nonlinear Optics for the Information Society, Springer (2007).
S. Kiokias, C. Proestos and V. Oreopoulou, Foods, 9, 534 (2020); https://doi.org/10.3390/foods9040534
B. Badhani, N. Sharma and R. Kakkar, RSC Adv., 5, 27540 (2015); https://doi.org/10.1039/C5RA01911G
M. Daglia, A. Di Lorenzo, S.F. Nabavi, Z.S. Talas and S.M. Nabavi, Curr. Pharm. Biotechnol., 15, 362 (2014); https://doi.org/10.2174/138920101504140825120737
S. Choubey, S. Goyal, L.R. Varughese, V. Kumar, A.K. Sharma and V. Beniwal, Mini-Rev. Med. Chem., 18, 1283 (2018); https://doi.org/10.2174/1389557518666180330114010
R. Kaur, S. Cherukuvada, P.B. Managutti and T.N.G. Row, CrystEngComm, 18, 3191 (2016); https://doi.org/10.1039/C5CE01965F
K.L. Jyothi, R. Gautam, D. Swain, T.N. Guru Row and N.K. Lokanath, Cryst. Res. Technol., 54, 1900016 (2019); https://doi.org/10.1002/crat.201900016
R.M. Shaker, M.A. Elrady and K.U. Sadek, Mol. Divers., 20, 153 (2016); https://doi.org/10.1007/s11030-015-9595-1
E. Colacino, G. Sindona, G. Gosselin and C. Mathé, Nucleos., Nucleot. Nucleic Acids, 22, 2013 (2003); https://doi.org/10.1081/NCN-120026403
P.S.L. Mageshwari, R. Priya, S. Krishnan, V. Joseph and S.J. Das, Opt. Laser Technol., 85, 66 (2016); https://doi.org/10.1016/j.optlastec.2016.06.002
S. Krishnan, C.J. Raj, R. Robert, A. Ramanand and S.J. Das, Cryst. Res. Technol., 42, 1087 (2007); https://doi.org/10.1002/crat.200710981
D.A. Kumar, R.S. Babu and S. Kalainatha, Opt. Mater., 109, 110286 (2020); https://doi.org/10.1016/j.optmat.2020.110286
W.A. Wooster, Rep. Prog. Phys., 16, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302
M.P. Nancy, J.R. Priya and J.M. Linet, J. Mater. Sci. Mater. Electron., 31, 8144 (2020); https://doi.org/10.1007/s10854-020-03265-2
D. Sivavishnu, R. Srineevasan and J. Johnson, Mater. Sci. Energy Technol., 1, 205 (2018); https://doi.org/10.1016/j.mset.2018.08.004
J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan and P. Ramasamy, Appl. Phys., A Mater. Sci. Process., 126, 888 (2020); https://doi.org/10.1007/s00339-020-04077-1
K. Senthil, K. Elangovan, A. Senthil and G. Vinitha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 247, 119063 (2021); https://doi.org/10.1016/j.saa.2020.119063
T.H. Wang, L. Cao, D. Zhong, J. Liu, F. Teng, S. Ji, S. Sun, J. Tang and B. Teng, CrystEngComm, 21, 2754 (2019); https://doi.org/10.1039/C9CE00150F
R. Kalaivanan and K. Srinivasan, Opt. Laser Technol., 90, 27 (2017); https://doi.org/10.1016/j.optlastec.2016.11.001
S. Delphine, A.R.S.J. Rani Juliet, S. Janarthanan and R.S. Samuel, Opt. Laser Technol., 90, 133 (2017); https://doi.org/10.1016/j.optlastec.2016.11.013
T. Dhanabal, G. Amirthaganesan, M. Dhandapani and S.K. Das, J. Chem. Sci., 124, 951 (2012); https://doi.org/10.1007/s12039-012-0289-2