Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Free Radical Scavenging Activity of Dihydrocaffeic Acid: A Quantum Chemical Approach
Corresponding Author(s) : S. Kalaiselvan
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
Based on density functional theory (DFT), to investigate relationships between the antioxidant activity and structure of dihydrocaffeic acid, quantum chemical calculation is used. The optimized structures of the neutral, radical and ionic forms have been carried out by DFT-B3LYP method with the 6-311G(d,p) basis set. Reaction enthalpies related with the hydrogen atom transfer (HAT), single electron transfer proton transfer (SET-PT) and sequential proton loss and electron transfer (SPLET) were calculated in gas and water phase. The HOMO-LUMO energy gap, electron affinity, electronegativity, ionization energy, hardness, chemical potential, global softness and global electrophilicity were calculated by using the same level of theory. Surfaces with a molecular electrostatic potential (MEP) were studied to determine the reactive sites of dihydrocaffeic acid. The difference in energy between the donor and acceptor as well as the stabilization energy was determined through the natural bond orbital (NBO) analysis. The Fukui index (FI) based on electron density was employed to predict reaction sites. Reaction enthalpies are compared with previously published data for phenol and 3,4-dihydroxycinnamic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhou, M. Zhou, Y. Liu, Q. Ye, J. Gu and G. Luo, Int. J. Food Prop., 19, 233 (2016); https://doi.org/10.1080/10942912.2014.983607
- B.M. Fraga, A. González-Coloma, S. Alegre-Gómez, M. LópezRodríguez, L.J. Amador and C.E. Díaz, Phytochemistry, 133, 59 (2017); https://doi.org/10.1016/j.phytochem.2016.10.008
- W.S. Feng, B. Zhu, X.K. Zheng, Y.L. Zhang, L.G. Yang and Y.J. Li, Chin. J. Nat. Med., 9, 108 (2011).
- D.S. Goldstein, R. Stull, S.P. Markey, E.S. Marks and H.R. Keiser, J. Chromatogr. B, 311, 148 (1984); https://doi.org/10.1016/S0378-4347(00)84701-5
- W.A. Pryor, Free Radic. Biol. Med., 28, 141 (2000); https://doi.org/10.1016/S0891-5849(99)00224-5
- M. Hahn, M. Baierle, M.F. Charão, G.B. Bubols, F.S. Gravina, P. Zielinsky, M.D. Arbo and S. Cristina Garcia, Drug Chem. Toxicol., 40, 368 (2017); https://doi.org/10.1080/01480545.2016.1212365
- M. Dizdaroglu, P. Jaruga, M. Birincioglu and H. Rodriguez, Free Radic. Biol. Med., 32, 1102 (2002); https://doi.org/10.1016/S0891-5849(02)00826-2
- A.C. Maritim, R.A. Sanders and J.B. Watkins, J. Biochem. Mol. Toxicol., 17, 24 (2003); https://doi.org/10.1002/jbt.10058
- A.J. Javan, M.J. Javan and Z.A. Tehrani, J. Agric. Food Chem., 61,1534 (2013); https://doi.org/10.1021/jf304926m
- Y. Xue, Y. Zheng, L. An, Y. Dou and Y. Liu, Food Chem., 151, 198 (2014); https://doi.org/10.1016/j.foodchem.2013.11.064
- G. Mazzone, N. Malaj, N. Russo and M. Toscano, Food Chem., 141, 2017 (2013); https://doi.org/10.1016/j.foodchem.2013.05.071
- N. Nenadis, H.Y. Zhang and M.Z. Tsimidou, J. Agric. Food Chem., 51, 1874 (2003); https://doi.org/10.1021/jf0261452
- J. Lengyel, J. Rimarcik, A. Vaganek and E. Klein, Phys. Chem. Chem. Phys., 15, 10895 (2013); https://doi.org/10.1039/c3cp00095h
- J.S. Wright, E.R. Johnson and G.A. DiLabio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u
- D.A. Pratt, G.A. DiLabio, G. Brigati, G.F. Pedulli and L. Valgimigli, J. Am. Chem. Soc., 123, 4625 (2001); https://doi.org/10.1021/ja005679l
- M. Wijtmans, D.A. Pratt, L. Valgimigli, G.A. DiLabio, G.F. Pedulli and N.A. Porter, Angew. Chem. Int. Ed., 42, 4370 (2003); https://doi.org/10.1002/anie.200351881
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, J.E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Ross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Wallingford, CT (2009).
- A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann and C.M. Morales, Weinhold F. NBO 3.1 Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, USA (2001).
- J. Tomasi and M. Persico, Chem. Rev., 94, 2027 (1994); https://doi.org/10.1021/cr00031a013
- V. Barone, M. Cossi and J.A. Tomasi, J. Chem. Phys., 107, 3210 (1997); https://doi.org/10.1063/1.474671
- P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
- T. Okada, M. Yamakawa, N. Ohmori, S. Mori, H. Horikawa, T. Hayashi and S. Fujishima, Chem. Cent. J., 4, 1 (2010); https://doi.org/10.1186/1752-153X-4-1
- J.L. Gazquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
- M. Leopoldini, T. Marino, N. Russo and M. Toscano, J. Phys. Chem. A, 108, 4916 (2004); https://doi.org/10.1021/jp037247d
- K. Sadasivam and R. Kumaresan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 282 (2011); https://doi.org/10.1016/j.saa.2011.02.042
- M. Lucarini, P. Pedrielli, G.F. Pedulli, S. Cabiddu and C. Fattuoni, J. Org. Chem., 61, 9259 (1996); https://doi.org/10.1021/jo961039i
- R.A. Jackson and K.M. Hosseini, J. Chem. Soc. Chem. Commun., 13, 967 (1992); https://doi.org/10.1039/C39920000967
- D.D.M. Wayner, E. Lusztyk, K.U. Ingold and P. Mulder, J. Org. Chem., 61, 6430 (1996); https://doi.org/10.1021/jo952167u
- E. Klein and V. Lukes, J. Phys. Chem. A, 110, 12312 (2006); https://doi.org/10.1021/jp063468i
- M. Nsangou, J.J. Fifen, Z. Dhaouadi and S. Lahmar, J. Mol. Struct. THEOCHEM, 862, 53 (2008); https://doi.org/10.1016/j.theochem.2008.04.028
- F. Martorana, M. Foti, A. Virtuoso, D. Gaglio, F. Aprea, T. Latronico, R. Rossano, P. Riccio, M. Papa, L. Alberghina and A.M. Colangelo, Oxid. Med. Cell. Longev., 2019, 1 (2019); https://doi.org/10.1155/2019/8056904
- F.A.M. Silva, F. Borges, C. Guimaraes, J.L.F.C. Lima, C. Matos and S. Reis, J. Agric. Food Chem., 48, 2122 (2000); https://doi.org/10.1021/jf9913110
- J.P. Tomasi and P.D. Truhlar, Chemical Application of Atomic and Molecular Electrostatic Potentials, Plenum: New York (1981).
- M.N. Arshad, A.M. Asiri, K.A. Alamry, T. Mahmood, M.A. Gilani, K. Ayub and A.S. Birinji, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 364 (2015); https://doi.org/10.1016/j.saa.2015.01.101
- K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); https://doi.org/10.1063/1.1700523
- K.O. Sulaiman and A.T. Onawole, Comput. Theor. Chem., 1093, 73 (2016); https://doi.org/10.1016/j.comptc.2016.08.014
- C.J. Parkinson, P.M. Mayer and L. Radom, J. Chem. Soc., Perkin Trans. 2, 11, 2305 (1999); https://doi.org/10.1039/a905476f
- F. Weinhold and C.R. Landis, Chem. Educ. Res. Pract., 2, 91 (2001); https://doi.org/10.1039/B1RP90011K
- M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. THEOCHEM, 827, 101 (2007); https://doi.org/10.1016/j.molstruc.2006.05.012
- Y. Erdogdu, O. Unsalan, M. Amalanathan and I. Hubert Joe, J. Mol. Struct., 980, 24 (2010); https://doi.org/10.1016/j.molstruc.2010.06.032
References
X. Zhou, M. Zhou, Y. Liu, Q. Ye, J. Gu and G. Luo, Int. J. Food Prop., 19, 233 (2016); https://doi.org/10.1080/10942912.2014.983607
B.M. Fraga, A. González-Coloma, S. Alegre-Gómez, M. LópezRodríguez, L.J. Amador and C.E. Díaz, Phytochemistry, 133, 59 (2017); https://doi.org/10.1016/j.phytochem.2016.10.008
W.S. Feng, B. Zhu, X.K. Zheng, Y.L. Zhang, L.G. Yang and Y.J. Li, Chin. J. Nat. Med., 9, 108 (2011).
D.S. Goldstein, R. Stull, S.P. Markey, E.S. Marks and H.R. Keiser, J. Chromatogr. B, 311, 148 (1984); https://doi.org/10.1016/S0378-4347(00)84701-5
W.A. Pryor, Free Radic. Biol. Med., 28, 141 (2000); https://doi.org/10.1016/S0891-5849(99)00224-5
M. Hahn, M. Baierle, M.F. Charão, G.B. Bubols, F.S. Gravina, P. Zielinsky, M.D. Arbo and S. Cristina Garcia, Drug Chem. Toxicol., 40, 368 (2017); https://doi.org/10.1080/01480545.2016.1212365
M. Dizdaroglu, P. Jaruga, M. Birincioglu and H. Rodriguez, Free Radic. Biol. Med., 32, 1102 (2002); https://doi.org/10.1016/S0891-5849(02)00826-2
A.C. Maritim, R.A. Sanders and J.B. Watkins, J. Biochem. Mol. Toxicol., 17, 24 (2003); https://doi.org/10.1002/jbt.10058
A.J. Javan, M.J. Javan and Z.A. Tehrani, J. Agric. Food Chem., 61,1534 (2013); https://doi.org/10.1021/jf304926m
Y. Xue, Y. Zheng, L. An, Y. Dou and Y. Liu, Food Chem., 151, 198 (2014); https://doi.org/10.1016/j.foodchem.2013.11.064
G. Mazzone, N. Malaj, N. Russo and M. Toscano, Food Chem., 141, 2017 (2013); https://doi.org/10.1016/j.foodchem.2013.05.071
N. Nenadis, H.Y. Zhang and M.Z. Tsimidou, J. Agric. Food Chem., 51, 1874 (2003); https://doi.org/10.1021/jf0261452
J. Lengyel, J. Rimarcik, A. Vaganek and E. Klein, Phys. Chem. Chem. Phys., 15, 10895 (2013); https://doi.org/10.1039/c3cp00095h
J.S. Wright, E.R. Johnson and G.A. DiLabio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u
D.A. Pratt, G.A. DiLabio, G. Brigati, G.F. Pedulli and L. Valgimigli, J. Am. Chem. Soc., 123, 4625 (2001); https://doi.org/10.1021/ja005679l
M. Wijtmans, D.A. Pratt, L. Valgimigli, G.A. DiLabio, G.F. Pedulli and N.A. Porter, Angew. Chem. Int. Ed., 42, 4370 (2003); https://doi.org/10.1002/anie.200351881
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, J.J. Heyd, M. Bearpark, J.E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Ross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01; Gaussian Wallingford, CT (2009).
A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann and C.M. Morales, Weinhold F. NBO 3.1 Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, USA (2001).
J. Tomasi and M. Persico, Chem. Rev., 94, 2027 (1994); https://doi.org/10.1021/cr00031a013
V. Barone, M. Cossi and J.A. Tomasi, J. Chem. Phys., 107, 3210 (1997); https://doi.org/10.1063/1.474671
P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
T. Okada, M. Yamakawa, N. Ohmori, S. Mori, H. Horikawa, T. Hayashi and S. Fujishima, Chem. Cent. J., 4, 1 (2010); https://doi.org/10.1186/1752-153X-4-1
J.L. Gazquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
M. Leopoldini, T. Marino, N. Russo and M. Toscano, J. Phys. Chem. A, 108, 4916 (2004); https://doi.org/10.1021/jp037247d
K. Sadasivam and R. Kumaresan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 282 (2011); https://doi.org/10.1016/j.saa.2011.02.042
M. Lucarini, P. Pedrielli, G.F. Pedulli, S. Cabiddu and C. Fattuoni, J. Org. Chem., 61, 9259 (1996); https://doi.org/10.1021/jo961039i
R.A. Jackson and K.M. Hosseini, J. Chem. Soc. Chem. Commun., 13, 967 (1992); https://doi.org/10.1039/C39920000967
D.D.M. Wayner, E. Lusztyk, K.U. Ingold and P. Mulder, J. Org. Chem., 61, 6430 (1996); https://doi.org/10.1021/jo952167u
E. Klein and V. Lukes, J. Phys. Chem. A, 110, 12312 (2006); https://doi.org/10.1021/jp063468i
M. Nsangou, J.J. Fifen, Z. Dhaouadi and S. Lahmar, J. Mol. Struct. THEOCHEM, 862, 53 (2008); https://doi.org/10.1016/j.theochem.2008.04.028
F. Martorana, M. Foti, A. Virtuoso, D. Gaglio, F. Aprea, T. Latronico, R. Rossano, P. Riccio, M. Papa, L. Alberghina and A.M. Colangelo, Oxid. Med. Cell. Longev., 2019, 1 (2019); https://doi.org/10.1155/2019/8056904
F.A.M. Silva, F. Borges, C. Guimaraes, J.L.F.C. Lima, C. Matos and S. Reis, J. Agric. Food Chem., 48, 2122 (2000); https://doi.org/10.1021/jf9913110
J.P. Tomasi and P.D. Truhlar, Chemical Application of Atomic and Molecular Electrostatic Potentials, Plenum: New York (1981).
M.N. Arshad, A.M. Asiri, K.A. Alamry, T. Mahmood, M.A. Gilani, K. Ayub and A.S. Birinji, Spectrochim. Acta A Mol. Biomol. Spectrosc., 142, 364 (2015); https://doi.org/10.1016/j.saa.2015.01.101
K. Fukui, T. Yonezawa and H. Shingu, J. Chem. Phys., 20, 722 (1952); https://doi.org/10.1063/1.1700523
K.O. Sulaiman and A.T. Onawole, Comput. Theor. Chem., 1093, 73 (2016); https://doi.org/10.1016/j.comptc.2016.08.014
C.J. Parkinson, P.M. Mayer and L. Radom, J. Chem. Soc., Perkin Trans. 2, 11, 2305 (1999); https://doi.org/10.1039/a905476f
F. Weinhold and C.R. Landis, Chem. Educ. Res. Pract., 2, 91 (2001); https://doi.org/10.1039/B1RP90011K
M. Szafran, A. Komasa and E. Bartoszak-Adamska, J. Mol. Struct. THEOCHEM, 827, 101 (2007); https://doi.org/10.1016/j.molstruc.2006.05.012
Y. Erdogdu, O. Unsalan, M. Amalanathan and I. Hubert Joe, J. Mol. Struct., 980, 24 (2010); https://doi.org/10.1016/j.molstruc.2010.06.032