Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Emission of Polycyclic Aromatic Hydrocarbons in Smoke Particulates at Three Different Combustion Stages from Burning of Rhizophora apiculate, Melaleuca leucadendron and Hevea brasiliensis Wood
Corresponding Author(s) : S. Suratman
Asian Journal of Chemistry,
Vol. 33 No. 4 (2021): Vol 33 Issue 4
Abstract
The purpose of this study was to characterize and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) emitted in smoke particulates from burning of Rhizophora apiculata, Melaleuca leucadendron and Hevea brasilensis at the smouldering, flaming and charring stages. Smoke particulates were sampled using a total suspended particulate Hi-volume sampler (HVS) at a rate of 1.13 m3/min and PAHs were extracted with a mixture of dichloromethane-methanol (3:1 v/v) using ultrasonic agitation. Fractionation of PAHs was carried out on an alumina-silica column and analysis by gas chromatography-mass spectrometry (GC-MS). The results showed that most of the samples exhibited the highest total identified PAHs in the smouldering stage with formation of PAHs with three rings or more increasing from the smouldering to flaming stages and reducing as combustion entered the charring stage. Naphthalene, phenanthrene and pyrene were the dominant PAHs detected in the wood smoke particulates, depending on combustion stage. Overall the emission and formation of PAHs are strongly dependent on combustion stage as well as other factors such as wood morphology, species, moisture content and combustion temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.C. Yadav and N.L. Devi, Biomass Burning, Regional Air Quality, and Climate Change; In: Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health, Elsevier Inc., United States, ed. 2, p. 7 (2018).
- B.R.T. Simoneit, W.F. Rogge, Q. Lang and R. Jaffé, Chemosphere, Glob. Chang. Sci., 2, 107 (2000); https://doi.org/10.1016/S1465-9972(99)00048-3
- J.M. Santos Barbosa, N. Ré-Poppi and M. Santiago-Silva, Environ. Res., 101, 304 (2006); https://doi.org/10.1016/j.envres.2006.01.005
- H. Lu, L.-H. Zhu and N.-L. Zhu, Atmos. Environ., 43, 978 (2009); https://doi.org/10.1016/j.atmosenv.2008.10.022
- Z.-Z. Wang, X.-H. Bi, G.-Y. Sheng and J.-M. Fu, Atmos. Environ., 43, 3096 (2009); https://doi.org/10.1016/j.atmosenv.2009.03.012
- D. Hall, C.-Y. Wu, Y.-M. Hsu, J. Stormer, G. Engling, K. Capeto, J. Wang, S. Brown, H.-W. Li and K.-M. Yu, Atmos. Environ., 55, 164 (2012); https://doi.org/10.1016/j.atmosenv.2012.03.034
- W. Wiriya, S. Sillapapiromsuk, N.-H. Lin and S. Chantara, Aerosol Air Qual. Res., 16, 2716 (2016); https://doi.org/10.4209/aaqr.2015.04.0278
- H. Hellén, L. Kangas, A. Kousa, M. Vestenius, K. Teinilä, A. Karppinen, J. Kukkonen and J. Niemi, Atmos. Chem. Phys., 17, 3475 (2017); https://doi.org/10.5194/acp-17-3475-2017
- C.-T. Pham, Y. Boongla, T.-D. Nghiem, H.-T. Le, N. Tang, A. Toriba and K. Hayakawa, Int. J. Environ. Res. Public Health, 16, 2343 (2019); https://doi.org/10.3390/ijerph16132343
- D.R. Oros and B.R.T. Simoneit, Appl. Geochem., 16, 1513 (2001a); https://doi.org/10.1016/S0883-2927(01)00021-X
- D.R. Oros and B.R.T. Simoneit, Appl. Geochem., 16, 1545 (2001b); https://doi.org/10.1016/S0883-2927(01)00022-1
- T. Korenaga, X.-X. Liu and Z.-Y. Huang, Chemosphere, Glob. Chang. Sci., 3, 117 (2001); https://doi.org/10.1016/S1465-9972(00)00045-3
- B.R.T. Simoneit, Appl. Geochem., 17, 129 (2002); https://doi.org/10.1016/S0883-2927(01)00061-0
- J. Jimenez, O. Farias, R. Quiroz and J. Yañez, J. Air Waste Manag. Assoc., 67, 806 (2017); https://doi.org/10.1080/10962247.2017.1295114
- J. Jauhiainen, I. Martin-Gullon, J.A. Conesa and R. Font, J. Anal. Appl. Pyrolysis, 74, 512 (2005); https://doi.org/10.1016/j.jaap.2004.10.003
- H.I. Abdel-Shafy and M.S.M. Mansour, Egyptian J. Petrol., 25, 107 (2016); https://doi.org/10.1016/j.ejpe.2015.03.011
- C. Wang, Y. Wang and H.M.S.K. Herath, Org. Geochem., 114, 1 (2017); https://doi.org/10.1016/j.orggeochem.2017.09.001
- G. Shen, W. Wang, Y. Yang, J. Ding, M. Xue, Y. Min, C. Zhu, H. Shen, W. Li, B. Wang, R. Wang, X. Wang, S. Tao and A.G. Russell, Environ. Sci. Technol., 45, 1206 (2011); https://doi.org/10.1021/es102151w
- M. Olsson and J. Kjällstrand, Biomass Bioenergy, 27, 607 (2004); https://doi.org/10.1016/j.biombioe.2003.08.018
- M. Olsson, Biomass Bioenergy, 30, 555 (2006); https://doi.org/10.1016/j.biombioe.2006.01.005
References
I.C. Yadav and N.L. Devi, Biomass Burning, Regional Air Quality, and Climate Change; In: Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health, Elsevier Inc., United States, ed. 2, p. 7 (2018).
B.R.T. Simoneit, W.F. Rogge, Q. Lang and R. Jaffé, Chemosphere, Glob. Chang. Sci., 2, 107 (2000); https://doi.org/10.1016/S1465-9972(99)00048-3
J.M. Santos Barbosa, N. Ré-Poppi and M. Santiago-Silva, Environ. Res., 101, 304 (2006); https://doi.org/10.1016/j.envres.2006.01.005
H. Lu, L.-H. Zhu and N.-L. Zhu, Atmos. Environ., 43, 978 (2009); https://doi.org/10.1016/j.atmosenv.2008.10.022
Z.-Z. Wang, X.-H. Bi, G.-Y. Sheng and J.-M. Fu, Atmos. Environ., 43, 3096 (2009); https://doi.org/10.1016/j.atmosenv.2009.03.012
D. Hall, C.-Y. Wu, Y.-M. Hsu, J. Stormer, G. Engling, K. Capeto, J. Wang, S. Brown, H.-W. Li and K.-M. Yu, Atmos. Environ., 55, 164 (2012); https://doi.org/10.1016/j.atmosenv.2012.03.034
W. Wiriya, S. Sillapapiromsuk, N.-H. Lin and S. Chantara, Aerosol Air Qual. Res., 16, 2716 (2016); https://doi.org/10.4209/aaqr.2015.04.0278
H. Hellén, L. Kangas, A. Kousa, M. Vestenius, K. Teinilä, A. Karppinen, J. Kukkonen and J. Niemi, Atmos. Chem. Phys., 17, 3475 (2017); https://doi.org/10.5194/acp-17-3475-2017
C.-T. Pham, Y. Boongla, T.-D. Nghiem, H.-T. Le, N. Tang, A. Toriba and K. Hayakawa, Int. J. Environ. Res. Public Health, 16, 2343 (2019); https://doi.org/10.3390/ijerph16132343
D.R. Oros and B.R.T. Simoneit, Appl. Geochem., 16, 1513 (2001a); https://doi.org/10.1016/S0883-2927(01)00021-X
D.R. Oros and B.R.T. Simoneit, Appl. Geochem., 16, 1545 (2001b); https://doi.org/10.1016/S0883-2927(01)00022-1
T. Korenaga, X.-X. Liu and Z.-Y. Huang, Chemosphere, Glob. Chang. Sci., 3, 117 (2001); https://doi.org/10.1016/S1465-9972(00)00045-3
B.R.T. Simoneit, Appl. Geochem., 17, 129 (2002); https://doi.org/10.1016/S0883-2927(01)00061-0
J. Jimenez, O. Farias, R. Quiroz and J. Yañez, J. Air Waste Manag. Assoc., 67, 806 (2017); https://doi.org/10.1080/10962247.2017.1295114
J. Jauhiainen, I. Martin-Gullon, J.A. Conesa and R. Font, J. Anal. Appl. Pyrolysis, 74, 512 (2005); https://doi.org/10.1016/j.jaap.2004.10.003
H.I. Abdel-Shafy and M.S.M. Mansour, Egyptian J. Petrol., 25, 107 (2016); https://doi.org/10.1016/j.ejpe.2015.03.011
C. Wang, Y. Wang and H.M.S.K. Herath, Org. Geochem., 114, 1 (2017); https://doi.org/10.1016/j.orggeochem.2017.09.001
G. Shen, W. Wang, Y. Yang, J. Ding, M. Xue, Y. Min, C. Zhu, H. Shen, W. Li, B. Wang, R. Wang, X. Wang, S. Tao and A.G. Russell, Environ. Sci. Technol., 45, 1206 (2011); https://doi.org/10.1021/es102151w
M. Olsson and J. Kjällstrand, Biomass Bioenergy, 27, 607 (2004); https://doi.org/10.1016/j.biombioe.2003.08.018
M. Olsson, Biomass Bioenergy, 30, 555 (2006); https://doi.org/10.1016/j.biombioe.2006.01.005