Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chemical and Plant Mediated Synthesis of La2O3 Nanoparticles and Comparison of their Structural, Antibacterial, Photocatalytic and Optical Properties
Corresponding Author(s) : R. Kunjitham
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
The La2O3 nanoparticles have been synthesized successfully with a chemical and biosynthesized method. The optical bandgap energy and of chemically synthesized or biosynthesized (M. oppositifolia and T. portlacaustrum leaf extract) La2O3 nanoparticles was calculated from UV-visible absorption between 5.10, 4.26 and 4.46 eV. The good polycrystalline cubic nature of synthesized La2O3 nanoparticles was evident from the bright circular SAED pattern, consistent with the XRD outcome. It is clear that the non-polar extracts could function as stabilizers for La2O3 nanoparticles through attachment to the counterions. The La2O3 nanoparticles have been used as efficient photocatalyst to degrade acid black 1 dye under sunlight irradiation. Besides, this biocatalyst showed excellent ability to degrade biosynthesized La2O3 nanoparticles (T. portlacaustrum) under visible light irradiation 87%. Synthesis of La2O3 nanoparticles by green chemistry process presented good antibacterial activity against Gram-negative and Gram-positive bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Verma, Toxicol. Ind. Health, 24, 491 (2008); https://doi.org/10.1177/0748233708095769
- R. Javaid and U.Y. Qazi, Int. J. Environ. Res. Public Health, 16, 2066 (2019); https://doi.org/10.3390/ijerph16112066
- J.O. Odiyo, L. Chimuka, M.A. Mamali and O.S. Fatoki, Int. J. Environ.Sci. Technol., 9, 203 (2012); https://doi.org/10.1007/s13762-012-0034-x
- W.K. Dodds, Limnol. Oceanogr., 51(1part2), 671 (2006); https://doi.org/10.4319/lo.2006.51.1_part_2.0671
- E.A. Clarke and R. Anliker, Organic Dyes and Pigments, In: Anthropogenic Compounds. Springer: Berlin, Heidelberg, pp 181-215 (1980).
- C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios and D. Mantzavinos, J. Chem. Technol. Biotechnol., 83, 769 (2008); https://doi.org/10.1002/jctb.1873
- C. Zaharia, D. Suteu, A. Muresan, R. Muresan and A. Popescu, Environ. Eng. Manag. J., 8, 1359 (2009); https://doi.org/10.30638/eemj.2009.199
- V. Homem and L. Santos, J. Environ. Manage., 92, 2304 (2011); https://doi.org/10.1016/j.jenvman.2011.05.023
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
- S.G. Kumar and L.G. Devi, J. Phys. Chem. A, 115, 13211 (2011); https://doi.org/10.1021/jp204364a
- J. Herney-Ramirez, M.A. Vicente and L.M. Madeira, Appl. Catal. B, 98, 10 (2010); https://doi.org/10.1016/j.apcatb.2010.05.004
- B. Yan, Acc. Chem. Res., 50, 2789 (2017); https://doi.org/10.1021/acs.accounts.7b00387
- Y. Zhang, S. Liu, Z.-S. Zhao, Z. Wang, R. Zhang, L. Liu and Z.-B. Han, Inorg. Chem. Front., 8, 590 (2021); https://doi.org/10.1039/D0QI01191F
- Z. Liu, Y. Li, Q. Bu, C.J. Guzy, Q. Li, W. Chen and C. Wang, J. Power Sources, 328, 329 (2016); https://doi.org/10.1016/j.jpowsour.2016.07.096
- E.E. Kiss and G.C. Boškovic, Process. Appl. Ceram., 6, 173 (2012); https://doi.org/10.2298/PAC1204173K
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv.Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
- A.J. Hoffman, E.R. Carraway and M.R. Hoffmann, Environ. Sci.Technol., 28, 776 (1994); https://doi.org/10.1021/es00054a006
- A. Machulek Jr., S.C. Oliveira, M.E. Osugi, V.S. Ferreira, F.H. Quina, R.F. Dantas, S.L. Oliveira, G.A. Casagrande, F.J. Anaissi, V.O. Silva,R.P. Cavalcante, F. Gozzi, D.D. Ramos, A.P.P. da Rosa, A.P.F. Santos, D.C. de Castro and J.A. Nogueira, Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants; In:Organic Pollutants Monitoring, Risk and Treatment, TECH Publisher: USA, Chap. 6, pp. 141-166 (2013).
- K. Chand, D. Cao, D.E. Fouad, A.H. Shah, A.Q. Dayo, K. Zhu, M.N.Lakhan, G. Mehdie and S. Dong, Arab. J. Chem., 13, 8248 (2020); https://doi.org/10.1016/j.arabjc.2020.01.009
- Mehilal, K.I. Dhabbe, A. Kumari, V. Manoj, P.P. Singh and B. Bhattacharya, J. Hazard. Mater., 205-206, 89 (2012);https://doi.org/10.1016/j.jhazmat.2011.12.022
- M. Ghiasi and A. Malekzadeh, Superlatt. Microstruct., 77, 295 (2015); https://doi.org/10.1016/j.spmi.2014.09.027
- A. Muthuvel, M. Jothibas and C. Manoharan, J. Environ. Chem. Eng.,8, 103705 (2020); https://doi.org/10.1016/j.jece.2020.103705
- H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir and A. Stamboulis, Appl. Phys. A, 124, 820 (2018); https://doi.org/10.1007/s00339-018-2246-5
- A. Muthuvel, M. Jothibas, C. Manoharan and S.J. Jayakumar, Res.Chem. Intermed., 46, 2705 (2020); https://doi.org/10.1007/s11164-020-04115-w
- K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy and A.N. Mallika, J. Adv. Ceram., 2, 260 (2013); https://doi.org/10.1007/s40145-013-0069-6
- N. Tripathi and S. Rath, Mater. Charact., 86, 263 (2013); https://doi.org/10.1016/j.matchar.2013.10.008
- T. Marimuthu, N. Anandhan, M. Mummoorthi, and V. Dharuman, AIP Conf. Proc., 1731, 080050 (2016);https://doi.org/10.1063/1.4947928
- N. Sulaiman, Y. Yulizar, and D.O.B. Apriandanu, AIP Conf. Proc., 2023,020105 (2018); https://doi.org/10.1063/1.5064102
- H. Saravani and M. Khajehali, Orient. J. Chem., 31, 2351 (2015);https://doi.org/10.13005/ojc/310464
- M. Salavati-Niasari, G. Hosseinzadeh and F. Davar, J. Alloys Comp.,509, 134 (2011); https://doi.org/10.1016/j.jallcom.2010.09.006
- E. Masarovicova and K. Kralova, Ecol. Chem. Eng., 20, 9 (2013); https://doi.org/10.2478/eces-2013-0001
- G. Ravi, M. Sarasija, D. Ayodhya, L.S. Kumari and D. Ashok, Nano Convergence, 6, 12 (2019); https://doi.org/10.1186/s40580-019-0181-6
- S. Fiedler, L.O. Lee Cheong Lem, C. Ton-That and M.R. Phillips, Appl.Surf. Sci., 504, 144409 (2020); https://doi.org/10.1016/j.apsusc.2019.144409
- Y. Kim and S. Kang, Nanotechnology, 22, 275707 (2011); https://doi.org/10.1088/0957-4484/22/27/275707
- H.W. Kim, J.C. Yang, H.G. Na and C. Lee, Appl. Surf. Sci., 257, 9420 (2011); https://doi.org/10.1016/j.apsusc.2011.06.022
- W.R. Siah, H.O. Lintang and L. Yuliati, Catal. Sci. Technol., 7, 159 (2017); https://doi.org/10.1039/C6CY01991A
References
Y. Verma, Toxicol. Ind. Health, 24, 491 (2008); https://doi.org/10.1177/0748233708095769
R. Javaid and U.Y. Qazi, Int. J. Environ. Res. Public Health, 16, 2066 (2019); https://doi.org/10.3390/ijerph16112066
J.O. Odiyo, L. Chimuka, M.A. Mamali and O.S. Fatoki, Int. J. Environ.Sci. Technol., 9, 203 (2012); https://doi.org/10.1007/s13762-012-0034-x
W.K. Dodds, Limnol. Oceanogr., 51(1part2), 671 (2006); https://doi.org/10.4319/lo.2006.51.1_part_2.0671
E.A. Clarke and R. Anliker, Organic Dyes and Pigments, In: Anthropogenic Compounds. Springer: Berlin, Heidelberg, pp 181-215 (1980).
C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios and D. Mantzavinos, J. Chem. Technol. Biotechnol., 83, 769 (2008); https://doi.org/10.1002/jctb.1873
C. Zaharia, D. Suteu, A. Muresan, R. Muresan and A. Popescu, Environ. Eng. Manag. J., 8, 1359 (2009); https://doi.org/10.30638/eemj.2009.199
V. Homem and L. Santos, J. Environ. Manage., 92, 2304 (2011); https://doi.org/10.1016/j.jenvman.2011.05.023
C.Y. Teh, P.M. Budiman, K.P.Y. Shak and T.Y. Wu, Ind. Eng. Chem. Res., 55, 4363 (2016); https://doi.org/10.1021/acs.iecr.5b04703
S.G. Kumar and L.G. Devi, J. Phys. Chem. A, 115, 13211 (2011); https://doi.org/10.1021/jp204364a
J. Herney-Ramirez, M.A. Vicente and L.M. Madeira, Appl. Catal. B, 98, 10 (2010); https://doi.org/10.1016/j.apcatb.2010.05.004
B. Yan, Acc. Chem. Res., 50, 2789 (2017); https://doi.org/10.1021/acs.accounts.7b00387
Y. Zhang, S. Liu, Z.-S. Zhao, Z. Wang, R. Zhang, L. Liu and Z.-B. Han, Inorg. Chem. Front., 8, 590 (2021); https://doi.org/10.1039/D0QI01191F
Z. Liu, Y. Li, Q. Bu, C.J. Guzy, Q. Li, W. Chen and C. Wang, J. Power Sources, 328, 329 (2016); https://doi.org/10.1016/j.jpowsour.2016.07.096
E.E. Kiss and G.C. Boškovic, Process. Appl. Ceram., 6, 173 (2012); https://doi.org/10.2298/PAC1204173K
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv.Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
A.J. Hoffman, E.R. Carraway and M.R. Hoffmann, Environ. Sci.Technol., 28, 776 (1994); https://doi.org/10.1021/es00054a006
A. Machulek Jr., S.C. Oliveira, M.E. Osugi, V.S. Ferreira, F.H. Quina, R.F. Dantas, S.L. Oliveira, G.A. Casagrande, F.J. Anaissi, V.O. Silva,R.P. Cavalcante, F. Gozzi, D.D. Ramos, A.P.P. da Rosa, A.P.F. Santos, D.C. de Castro and J.A. Nogueira, Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants; In:Organic Pollutants Monitoring, Risk and Treatment, TECH Publisher: USA, Chap. 6, pp. 141-166 (2013).
K. Chand, D. Cao, D.E. Fouad, A.H. Shah, A.Q. Dayo, K. Zhu, M.N.Lakhan, G. Mehdie and S. Dong, Arab. J. Chem., 13, 8248 (2020); https://doi.org/10.1016/j.arabjc.2020.01.009
Mehilal, K.I. Dhabbe, A. Kumari, V. Manoj, P.P. Singh and B. Bhattacharya, J. Hazard. Mater., 205-206, 89 (2012);https://doi.org/10.1016/j.jhazmat.2011.12.022
M. Ghiasi and A. Malekzadeh, Superlatt. Microstruct., 77, 295 (2015); https://doi.org/10.1016/j.spmi.2014.09.027
A. Muthuvel, M. Jothibas and C. Manoharan, J. Environ. Chem. Eng.,8, 103705 (2020); https://doi.org/10.1016/j.jece.2020.103705
H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir and A. Stamboulis, Appl. Phys. A, 124, 820 (2018); https://doi.org/10.1007/s00339-018-2246-5
A. Muthuvel, M. Jothibas, C. Manoharan and S.J. Jayakumar, Res.Chem. Intermed., 46, 2705 (2020); https://doi.org/10.1007/s11164-020-04115-w
K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy and A.N. Mallika, J. Adv. Ceram., 2, 260 (2013); https://doi.org/10.1007/s40145-013-0069-6
N. Tripathi and S. Rath, Mater. Charact., 86, 263 (2013); https://doi.org/10.1016/j.matchar.2013.10.008
T. Marimuthu, N. Anandhan, M. Mummoorthi, and V. Dharuman, AIP Conf. Proc., 1731, 080050 (2016);https://doi.org/10.1063/1.4947928
N. Sulaiman, Y. Yulizar, and D.O.B. Apriandanu, AIP Conf. Proc., 2023,020105 (2018); https://doi.org/10.1063/1.5064102
H. Saravani and M. Khajehali, Orient. J. Chem., 31, 2351 (2015);https://doi.org/10.13005/ojc/310464
M. Salavati-Niasari, G. Hosseinzadeh and F. Davar, J. Alloys Comp.,509, 134 (2011); https://doi.org/10.1016/j.jallcom.2010.09.006
E. Masarovicova and K. Kralova, Ecol. Chem. Eng., 20, 9 (2013); https://doi.org/10.2478/eces-2013-0001
G. Ravi, M. Sarasija, D. Ayodhya, L.S. Kumari and D. Ashok, Nano Convergence, 6, 12 (2019); https://doi.org/10.1186/s40580-019-0181-6
S. Fiedler, L.O. Lee Cheong Lem, C. Ton-That and M.R. Phillips, Appl.Surf. Sci., 504, 144409 (2020); https://doi.org/10.1016/j.apsusc.2019.144409
Y. Kim and S. Kang, Nanotechnology, 22, 275707 (2011); https://doi.org/10.1088/0957-4484/22/27/275707
H.W. Kim, J.C. Yang, H.G. Na and C. Lee, Appl. Surf. Sci., 257, 9420 (2011); https://doi.org/10.1016/j.apsusc.2011.06.022
W.R. Siah, H.O. Lintang and L. Yuliati, Catal. Sci. Technol., 7, 159 (2017); https://doi.org/10.1039/C6CY01991A