Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Identification of the Organic Volatile Impurities in Ezitamibe using GC-HS Technique
Corresponding Author(s) : Durgababu Rapeti
Asian Journal of Chemistry,
Vol. 33 No. 3 (2021): Vol 33 Issue 3
Abstract
Ezetimibe prevents intestinal cholesterol synthesis, which in turn reduces the quantity of cholesterol and thereby helps to reduce heart problems and strokes. In the production of ezetimibe, several organic chemical solvents such as methanol, acetone, isopropyl alcohol, dichloromethane, n-hexane, ethyl acetate, tetrahydrofuran, toluene and dimethyl formamide were used. The measurement of residual solvents is necessary for release checks of all drug substances, based on sound manufacturing processes. The analysis of above mentioned nine solvents in ezetimibe drug was investigated using gas chromatographic method employing detection with flame ionization mode. All analyses were performed using ZB-624 column (30 m length × 0.53 mm identification, 3.0 μm thickness film). The column oven temperature flux was managed to maintain for 11 min at 40 ºC and then continued to upsurge to a temperature close of 240 ºC at a rate of 20 ºC/min and retained for 4 min. The flame ionization detector and injector port were managed at 260 and 200 ºC, respectively. Results after the validation of the gas chromatographic method showed the satisfactory linearity, sensitivity, robustness, accuracy, selectivity and precision for the tested organic solvents. This gas chromatographic approach can therefore be exploited in the assessment of studied nine residual chemical solvents for periodic analysis by gas chromatography for samples of ezetimibe drug.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Prajapati and Y.K. Agrawal, Rev. Anal. Chem., 33, 123 (2014);https://doi.org/10.1515/revac-2014-0001
- B.W. Cue and J. Zhang, Green Chem. Lett. Rev., 2, 193 (2009); https://doi.org/10.1080/17518250903258150
- D. Joshi and N. Adhikari, J. Pharm. Res. Int., 28, 1 (2019); https://doi.org/10.9734/jpri/2019/v28i330203
- K. Dixit, R.B. Athawale and S. Singh, J. Microencapsul., 32, 107 (2015); https://doi.org/10.3109/02652048.2014.995730
- G. Lewis, Maximizing Solvent Removal Efficiency, Pharmamanufacturing.com. Accessed on November 2020, Available at: https://www.pharmamanufacturing.com/articles/2014/maximizing-solventremoval-efficiency/.
- ICH harmonised guideline, impurities: guideline for residual solvents Q3C(R6), International council for harmonisation of technical requirements for pharmaceuticals for human use, 2016.
- D. Hammersley and M. Signy, Ther. Adv. Chronic Dis., 8, 4 (2017); https://doi.org/10.1177/2040622316672544
- J.Y. Choi and J.O. Na, J. Lipid Atheroscler., 8, 183 (2019); https://doi.org/10.12997/jla.2019.8.2.183
- M. Vavlukis and A. Vavlukis, Drugs Context, 7, 212534 (2018); https://doi.org/10.7573/dic.212534
- S. Oikawa, S. Yamashita, N. Nakaya, J. Sasaki and S. Kono, J. Atheroscler. Thromb., 24, 77 (2017); https://doi.org/10.5551/jat.35626
- S. Zhan, M. Tang, F. Liu, P. Xia, M. Shu and X. Wu, Cochrane Database Syst. Rev., 11, CD012502 (2018);https://doi.org/10.1002/14651858.CD012502.pub2
- Y. Zhu, J. Pan, S. Zhang, Z. Liu, D. Ye and W. Zhou, Synth. Commun., 46, 1687 (2016); https://doi.org/10.1080/00397911.2016.1221969
- M. Sniezek, S. Stecko, I. Panfil, B. Furman and M. Chmielewski, J. Org. Chem., 78, 7048 (2013); https://doi.org/10.1021/jo400807c
- K. Grodowska and A. Parczewski, Acta Pol. Pharm., 67, 3 (2010).
- ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1); In International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, International Conference on Harmonization (2005)
References
P. Prajapati and Y.K. Agrawal, Rev. Anal. Chem., 33, 123 (2014);https://doi.org/10.1515/revac-2014-0001
B.W. Cue and J. Zhang, Green Chem. Lett. Rev., 2, 193 (2009); https://doi.org/10.1080/17518250903258150
D. Joshi and N. Adhikari, J. Pharm. Res. Int., 28, 1 (2019); https://doi.org/10.9734/jpri/2019/v28i330203
K. Dixit, R.B. Athawale and S. Singh, J. Microencapsul., 32, 107 (2015); https://doi.org/10.3109/02652048.2014.995730
G. Lewis, Maximizing Solvent Removal Efficiency, Pharmamanufacturing.com. Accessed on November 2020, Available at: https://www.pharmamanufacturing.com/articles/2014/maximizing-solventremoval-efficiency/.
ICH harmonised guideline, impurities: guideline for residual solvents Q3C(R6), International council for harmonisation of technical requirements for pharmaceuticals for human use, 2016.
D. Hammersley and M. Signy, Ther. Adv. Chronic Dis., 8, 4 (2017); https://doi.org/10.1177/2040622316672544
J.Y. Choi and J.O. Na, J. Lipid Atheroscler., 8, 183 (2019); https://doi.org/10.12997/jla.2019.8.2.183
M. Vavlukis and A. Vavlukis, Drugs Context, 7, 212534 (2018); https://doi.org/10.7573/dic.212534
S. Oikawa, S. Yamashita, N. Nakaya, J. Sasaki and S. Kono, J. Atheroscler. Thromb., 24, 77 (2017); https://doi.org/10.5551/jat.35626
S. Zhan, M. Tang, F. Liu, P. Xia, M. Shu and X. Wu, Cochrane Database Syst. Rev., 11, CD012502 (2018);https://doi.org/10.1002/14651858.CD012502.pub2
Y. Zhu, J. Pan, S. Zhang, Z. Liu, D. Ye and W. Zhou, Synth. Commun., 46, 1687 (2016); https://doi.org/10.1080/00397911.2016.1221969
M. Sniezek, S. Stecko, I. Panfil, B. Furman and M. Chmielewski, J. Org. Chem., 78, 7048 (2013); https://doi.org/10.1021/jo400807c
K. Grodowska and A. Parczewski, Acta Pol. Pharm., 67, 3 (2010).
ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1); In International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, International Conference on Harmonization (2005)