Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Temperature and Calcium Ion Concentration on Gelation and Rheological Properties of Low Methylated Pectin
Corresponding Author(s) : Ajit K. Surabhi
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Effect of the influence of temperature and calcium (Ca2+) ion concentration on the rheological properties of pectin viz. storage modulus (G′) and loss (G′′) oscillatory moduli of low methoxyl pectin in the presence of varying amounts of Ca2+ ion. It was observed that upon lowering the temperature in the presence of Ca2+, both G′ and G′′ increased immediately, followed by a further slow logarithmic increase with time. It was also noticed that storage modulus (G′) increased with rising calcium ion concentration initially but further raising the calcium ion concentration lowered the value of G′. The frequency sweep curves revealed that at lower concentrations, pectin-Ca2+ samples exhibited viscoelastic behaviour but at higher concentrations, elastic and well-structured gel-like properties were evident.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.H. Walter and H.L. Matias, Food Hydrocoll., 3, 205 (1989); https://doi.org/10.1016/S0268-005X(89)80004-9.
- C.D. May, Carbohydr. Polym., 12, 79 (1990); https://doi.org/10.1016/0144-8617(90)90105-2.
- C. Rolin, in eds.: R. Whistler and J. BeMiller, Pectin, In: Industrial Gums: Polysaccharides and Their Derivatives, Academic Press, edn 3, pp. 257-293 (1993).
- D. Lootens, F. Capel, D. Durand, T. Nicolai, P. Boulenguer and V. Langendorff, Food Hydrocoll., 17, 237 (2003); https://doi.org/10.1016/S0268-005X(02)00056-5.
- D.G. Oakenfull and A. Scott, J. Food Sci., 49, 1093 (1984); https://doi.org/10.1111/j.1365-2621.1984.tb10401.x.
- B.R. Thakur, R.K. Singh, A.K. Handa and M.A. Rao, Crit. Rev. Food Sci. Nutr., 37, 47 (1997); https://doi.org/10.1080/10408399709527767.
- A.G.J. Voragen, H.A. Schols and R.G.F. Visser, Advances in Pectin and Pectinase Research, Dordrecht, Germany (2003).
- S.M. Cardoso, M.A. Coimbra and J.A. Lopes da Silva, Food Hydrocoll., 17, 801 (2003); https://doi.org/10.1016/S0268-005X(03)00101-2.
- C. Garnier, M.A.V. Axelos and J.F. Thibault, Carbohydr. Res., 256, 71 (1994); https://doi.org/10.1016/0008-6215(94)84228-0.
- R. Kohn, Carbohydr. Res., 160, 343 (1987); https://doi.org/10.1016/0008-6215(87)80322-1.
- D. Durand, C. Bertrand, J.P. Busnel, J.R. Emery, M.A.V. Axelos and J.F. Thibault, Physical Networks-Polymers and Gels, p. 283 (1990).
- J. Gigli, C. Garnier and L. Piazza, Food Hydrocoll., 23, 1406 (2009); https://doi.org/10.1016/j.foodhyd.2008.09.015.
- J. Mierczynska, J. Cybulska, B. Solowiej and A. Zdunek, Carbohyd. Polym., 133, 547 (2015); https://doi.org/10.1016/j.carbpol.2015.07.046.
- A.H. Clark and D.B. Farrer, Food Hydrocoll., 10, 31 (1996); https://doi.org/10.1016/S0268-005X(96)80051-8.
- A.H. Clark, K.T. Evans and D.B. Farrer, Int. J. Biol. Macromol., 16, 125 (1994); https://doi.org/10.1016/0141-8130(94)90038-8.
- C.K. Siew, P.A. Williams and N.W.G. Young, Biomacromolecules, 6, 963 (2005); https://doi.org/10.1021/bm049341l.
- D. Khondkar, R.F. Tester, N. Hudson, J. Karkalas and J. Morrow, Food Hydrocoll., 21, 1296 (2007); https://doi.org/10.1016/j.foodhyd.2006.10.008.
- M.A. Rao and H.J. Cooley, J. Food Sci., 58, 876 (1993); https://doi.org/10.1111/j.1365-2621.1993.tb09381.x.
- C. Kyomugasho, S. Christiaens, D. Van de Walle, A.M. Van Loey, K. Dewettinck and M.E. Hendrickx, Food Hydrocoll., 61, 172 (2016); https://doi.org/10.1016/j.foodhyd.2016.05.018.
References
R.H. Walter and H.L. Matias, Food Hydrocoll., 3, 205 (1989); https://doi.org/10.1016/S0268-005X(89)80004-9.
C.D. May, Carbohydr. Polym., 12, 79 (1990); https://doi.org/10.1016/0144-8617(90)90105-2.
C. Rolin, in eds.: R. Whistler and J. BeMiller, Pectin, In: Industrial Gums: Polysaccharides and Their Derivatives, Academic Press, edn 3, pp. 257-293 (1993).
D. Lootens, F. Capel, D. Durand, T. Nicolai, P. Boulenguer and V. Langendorff, Food Hydrocoll., 17, 237 (2003); https://doi.org/10.1016/S0268-005X(02)00056-5.
D.G. Oakenfull and A. Scott, J. Food Sci., 49, 1093 (1984); https://doi.org/10.1111/j.1365-2621.1984.tb10401.x.
B.R. Thakur, R.K. Singh, A.K. Handa and M.A. Rao, Crit. Rev. Food Sci. Nutr., 37, 47 (1997); https://doi.org/10.1080/10408399709527767.
A.G.J. Voragen, H.A. Schols and R.G.F. Visser, Advances in Pectin and Pectinase Research, Dordrecht, Germany (2003).
S.M. Cardoso, M.A. Coimbra and J.A. Lopes da Silva, Food Hydrocoll., 17, 801 (2003); https://doi.org/10.1016/S0268-005X(03)00101-2.
C. Garnier, M.A.V. Axelos and J.F. Thibault, Carbohydr. Res., 256, 71 (1994); https://doi.org/10.1016/0008-6215(94)84228-0.
R. Kohn, Carbohydr. Res., 160, 343 (1987); https://doi.org/10.1016/0008-6215(87)80322-1.
D. Durand, C. Bertrand, J.P. Busnel, J.R. Emery, M.A.V. Axelos and J.F. Thibault, Physical Networks-Polymers and Gels, p. 283 (1990).
J. Gigli, C. Garnier and L. Piazza, Food Hydrocoll., 23, 1406 (2009); https://doi.org/10.1016/j.foodhyd.2008.09.015.
J. Mierczynska, J. Cybulska, B. Solowiej and A. Zdunek, Carbohyd. Polym., 133, 547 (2015); https://doi.org/10.1016/j.carbpol.2015.07.046.
A.H. Clark and D.B. Farrer, Food Hydrocoll., 10, 31 (1996); https://doi.org/10.1016/S0268-005X(96)80051-8.
A.H. Clark, K.T. Evans and D.B. Farrer, Int. J. Biol. Macromol., 16, 125 (1994); https://doi.org/10.1016/0141-8130(94)90038-8.
C.K. Siew, P.A. Williams and N.W.G. Young, Biomacromolecules, 6, 963 (2005); https://doi.org/10.1021/bm049341l.
D. Khondkar, R.F. Tester, N. Hudson, J. Karkalas and J. Morrow, Food Hydrocoll., 21, 1296 (2007); https://doi.org/10.1016/j.foodhyd.2006.10.008.
M.A. Rao and H.J. Cooley, J. Food Sci., 58, 876 (1993); https://doi.org/10.1111/j.1365-2621.1993.tb09381.x.
C. Kyomugasho, S. Christiaens, D. Van de Walle, A.M. Van Loey, K. Dewettinck and M.E. Hendrickx, Food Hydrocoll., 61, 172 (2016); https://doi.org/10.1016/j.foodhyd.2016.05.018.