Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antibacterial Studies of Silver Complex of 3-Aminopropyltriethoxysilane
Corresponding Author(s) : Hayder Hamied Mihsen
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
A new complex of silver, [Ag(APTES)2NO3] using 3-aminopropyltriethoxysilane (APTES) as a ligand has been symthesized. The new complex was characterized by molar conductance measurement, UV-visible, infrared, nuclear magnetic resonance, thermogravimetry and atomic absorption spectroscopy. FT-IR and 1H NMR analyses indicated that ligand APTES and NO3– ion are coordinated to the silver ion via nitrogen amino group and oxygen nitro group, respectively. Molar conductance value for the complex indicates that the complex is non-electrolyte. While TGA-DTA analysis showed that the degradation of complex occurs between 200-593 ºC. The complex assume triagonal geometry in which Ag(I) have two molecules of APTES and one molecule from ionic nitrate in the coordination sphere. The new complex of [Ag(APTES)2NO3] showed pronounced antibacterial effect against proteus (P. mirablis) bacteria isolated from patient with urinary tract infection. Also had been exhibited a clear decrease in the ability of tested bacteria to form biofilm after treating with MIC of complex.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.B. Gholivand, M.M. Abolghasemi and P. Fattahpour, Chromatographia, 74, 807 (2011); https://doi.org/10.1007/s10337-011-2146-8.
- E.P. Plueddemann, Silane Coupling Agents, Springer: USA, edn 2 (1991).
- M.T. Goldani, A. Mohammadi and R. Sandaroos, J. Chem. Sci., 126, 801 (2014); https://doi.org/10.1007/s12039-014-0619-7.
- Ebenezer. R1, Sheela, Int. J. Emerging Trends Pharmaceut. Sci., 2, 5 (2013).
- A. Simon, T. Cohen-Bouhacina, M.C. Porte, J.P. Aime and C. Baquey, J. Colloid Interface Sci., 251, 278 (2002); https://doi.org/10.1006/jcis.2002.8385.
- U.G. Singh, R.T. Williams, K.R. Hallam and G.C. Allen, J. Solid State Chem., 178, 3405 (2005); https://doi.org/10.1016/j.jssc.2005.08.023.
- S. Jana, B. Dutta, R. Bera and S. Koner, Langmuir, 23, 2492 (2007); https://doi.org/10.1021/la062409t.
- S. Attia, A. Shames, I. Zilbermann, G. Goobes, D. Meyerstein and E. Maimon, Dalton Trans., 43, 103 (2014); https://doi.org/10.1039/C3DT51962G.
- S.G. Shyu, S.W. Cheng and D.L. Tzou, Chem. Commun., 2337 (1999); https://doi.org/10.1039/a907207a.
- M. Liu, K. Hidajat, S. Kawi and D.Y. Zhao, Chem. Commun., 1145 (2000); https://doi.org/10.1039/b002661l.
- X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, J. Liu and K.M. Kemner, Science, 276, 923 (1997); https://doi.org/10.1126/science.276.5314.923.
- C. Muller, M.A. Schneider, T. Mallat and A. Baiker, J. Catal., 192, 448 (2000); https://doi.org/10.1006/jcat.2000.2859.
- D.A. Agnese, T. Angelo, D. Roberto, B. Marcella, P. Maddalena, D. Giacomo, C. Lucia, P. Piersandro and G. Pietro, Nanomaterials, 7, 7 (2017); https://doi.org/10.3390/nano7010007.
- I. Vukoje, V. Lazic, V. Vodnik, M. Mitric, B. Jokic, S. Phillip Ahrenkiel, J.M. Nedeljkovic and M. Radetic, J. Mater. Sci., 49, 4453 (2014); https://doi.org/10.1007/s10853-014-8142-2.
- H.J. Klasen, Burns, 26, 117 (2000a); https://doi.org/10.1016/S0305-4179(99)00108-4.
- E.J. Baron and S.M. Finegold, Diagnostic Microbiology, The C.V. Mosby Company, Baltimore, USA, edn 8 (1990).
- J.G. Collee, A.G. Fraser, B.P. Mjarmion and A. Simmons, Mackie and McCartney Practical Medical Microbiology, Churchill. Livingston. USA, edn 14 (1996).
- J. Vandepitte, J. Verhaegen, K. Engbaek, P. Rohner, P. Piot and C. Heuck, Basic Laboratory Procedures in Clinical Bacteriology, World Health Organization (2003).
- T. Mathur, S. Singhal, S. Khan, D.J. Upadhyay, T. Fatma and A. Rattan, Indian J. Med. Microbiol., 24, 25 (2006); https://doi.org/10.4103/0255-0857.19890.
- N.C. Maldonado, C. Silva de Ruiz, M. Cecilia and M.E.A. Nader-Macias, ed.: A. Mendez-Vilas, A Simple Technique To Detect Klebsiella BiofilmForming-Strains Inhibitory Potential of Lactobacillus fermentum CRL 1058 Whole Cells And Products, Communicating Current Research and Educational Topics and Tends in Applied Microbiology, pp. 52-59 (2007).
- J.B. Patel, F.R. Cockerill, P.A. Bradford, G.M. Eliopoulus, J.A. Hindler, S.G. Jenkins, J.S. Lewis II, B. Limbago, L.A. Miller, D.P. Nicolau, M. Powell, J.M. Swenson, M.M. Traczewski, J.D. Turnidge, M.P. Weinstein and B.L. Zimmer, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, edn 9 CLSI Document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute (2015).
- P.R. Shukla, Advance Coordination Chemistry, Himalya Publishing House, New Delhi, India, pp.165-204 (2012).
- C. John, Interpretation of Infrared Spectra: A Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons (2006).
- E.R. Lippincott, A. Vanvalkenburg, C.E. Weir and E.N. Bunting, J. Res. Natl. Bur. Stand., 61, 61 (1958); https://doi.org/10.6028/jres.061.009.
- G.S. Ahmed, M. Gilbert, S. Mainprize and M. Rogerson, Plast. Rubber Compos., 38, 13 (2009); https://doi.org/10.1179/174328909X387711.
- F.A. El-Saied, M.I. Ayad and S.A. Aly, Transition Met. Chem., 18, 279 (1993); https://doi.org/10.1007/BF00207946.
- R.C. Maurya, D.D. Mishra, S. Jain and M. Jaiswal, Synth. React. Inorg. Met.-Org. Chem., 23, 1335 (1993); https://doi.org/10.1080/15533179308016690.
- N.K. Fayad and H.A Taghreed, Adv. Phys. Theories Appl., 9, 1 (2012).
- N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); https://doi.org/10.1007/BF02708270.
- N.T. Yulia, Proton NMR studies of Functionalized Nanoparticles in Aqueous Environments, University of Iowa, Spring (2014).
- M. Nasim, P. Tharmaraj and P.S. Venkataramani, Synth. React. Inorg. Met.-Org. Chem., 29, 1249 (1999); https://doi.org/10.1080/00945719909349526.
- D.C. Sulikowska, A. Malinowska and J.R. Doczekalska, Pol. J. Chem., 74, 607 (2000).
- M. Priebe, J. Widmer, N. Suhartha Löwa, S.-L. Abram, I. Mottas, A.-K. Woischnig, P.S. Brunetto, N. Khanna, C. Bourquin and K.M. Fromm, Nanomedicine, 13, 11 (2017); https://doi.org/10.1016/j.nano.2016.08.002.
- J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059.
- S. Svensson, F. Suska, L. Emanuelsson, A. Palmquist, B. Norlindh, M. Trobos, H. Bäckros, L. Persson, G. Rydja, M. Ohrlander, B. Lyvén, J. Lausmaa and P. Thomsen, Nanomedicine NBM, 9, 1048 (2013); https://doi.org/10.1016/j.nano.2013.04.009.
- S. Mohanty, S. Mishra, P. Jena, B. Jacob, B. Sarkar and A. Sonawane, Nanomedicine NBM, 8, 916 (2012); https://doi.org/10.1016/j.nano.2011.11.007.
References
M.B. Gholivand, M.M. Abolghasemi and P. Fattahpour, Chromatographia, 74, 807 (2011); https://doi.org/10.1007/s10337-011-2146-8.
E.P. Plueddemann, Silane Coupling Agents, Springer: USA, edn 2 (1991).
M.T. Goldani, A. Mohammadi and R. Sandaroos, J. Chem. Sci., 126, 801 (2014); https://doi.org/10.1007/s12039-014-0619-7.
Ebenezer. R1, Sheela, Int. J. Emerging Trends Pharmaceut. Sci., 2, 5 (2013).
A. Simon, T. Cohen-Bouhacina, M.C. Porte, J.P. Aime and C. Baquey, J. Colloid Interface Sci., 251, 278 (2002); https://doi.org/10.1006/jcis.2002.8385.
U.G. Singh, R.T. Williams, K.R. Hallam and G.C. Allen, J. Solid State Chem., 178, 3405 (2005); https://doi.org/10.1016/j.jssc.2005.08.023.
S. Jana, B. Dutta, R. Bera and S. Koner, Langmuir, 23, 2492 (2007); https://doi.org/10.1021/la062409t.
S. Attia, A. Shames, I. Zilbermann, G. Goobes, D. Meyerstein and E. Maimon, Dalton Trans., 43, 103 (2014); https://doi.org/10.1039/C3DT51962G.
S.G. Shyu, S.W. Cheng and D.L. Tzou, Chem. Commun., 2337 (1999); https://doi.org/10.1039/a907207a.
M. Liu, K. Hidajat, S. Kawi and D.Y. Zhao, Chem. Commun., 1145 (2000); https://doi.org/10.1039/b002661l.
X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, J. Liu and K.M. Kemner, Science, 276, 923 (1997); https://doi.org/10.1126/science.276.5314.923.
C. Muller, M.A. Schneider, T. Mallat and A. Baiker, J. Catal., 192, 448 (2000); https://doi.org/10.1006/jcat.2000.2859.
D.A. Agnese, T. Angelo, D. Roberto, B. Marcella, P. Maddalena, D. Giacomo, C. Lucia, P. Piersandro and G. Pietro, Nanomaterials, 7, 7 (2017); https://doi.org/10.3390/nano7010007.
I. Vukoje, V. Lazic, V. Vodnik, M. Mitric, B. Jokic, S. Phillip Ahrenkiel, J.M. Nedeljkovic and M. Radetic, J. Mater. Sci., 49, 4453 (2014); https://doi.org/10.1007/s10853-014-8142-2.
H.J. Klasen, Burns, 26, 117 (2000a); https://doi.org/10.1016/S0305-4179(99)00108-4.
E.J. Baron and S.M. Finegold, Diagnostic Microbiology, The C.V. Mosby Company, Baltimore, USA, edn 8 (1990).
J.G. Collee, A.G. Fraser, B.P. Mjarmion and A. Simmons, Mackie and McCartney Practical Medical Microbiology, Churchill. Livingston. USA, edn 14 (1996).
J. Vandepitte, J. Verhaegen, K. Engbaek, P. Rohner, P. Piot and C. Heuck, Basic Laboratory Procedures in Clinical Bacteriology, World Health Organization (2003).
T. Mathur, S. Singhal, S. Khan, D.J. Upadhyay, T. Fatma and A. Rattan, Indian J. Med. Microbiol., 24, 25 (2006); https://doi.org/10.4103/0255-0857.19890.
N.C. Maldonado, C. Silva de Ruiz, M. Cecilia and M.E.A. Nader-Macias, ed.: A. Mendez-Vilas, A Simple Technique To Detect Klebsiella BiofilmForming-Strains Inhibitory Potential of Lactobacillus fermentum CRL 1058 Whole Cells And Products, Communicating Current Research and Educational Topics and Tends in Applied Microbiology, pp. 52-59 (2007).
J.B. Patel, F.R. Cockerill, P.A. Bradford, G.M. Eliopoulus, J.A. Hindler, S.G. Jenkins, J.S. Lewis II, B. Limbago, L.A. Miller, D.P. Nicolau, M. Powell, J.M. Swenson, M.M. Traczewski, J.D. Turnidge, M.P. Weinstein and B.L. Zimmer, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, edn 9 CLSI Document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute (2015).
P.R. Shukla, Advance Coordination Chemistry, Himalya Publishing House, New Delhi, India, pp.165-204 (2012).
C. John, Interpretation of Infrared Spectra: A Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons (2006).
E.R. Lippincott, A. Vanvalkenburg, C.E. Weir and E.N. Bunting, J. Res. Natl. Bur. Stand., 61, 61 (1958); https://doi.org/10.6028/jres.061.009.
G.S. Ahmed, M. Gilbert, S. Mainprize and M. Rogerson, Plast. Rubber Compos., 38, 13 (2009); https://doi.org/10.1179/174328909X387711.
F.A. El-Saied, M.I. Ayad and S.A. Aly, Transition Met. Chem., 18, 279 (1993); https://doi.org/10.1007/BF00207946.
R.C. Maurya, D.D. Mishra, S. Jain and M. Jaiswal, Synth. React. Inorg. Met.-Org. Chem., 23, 1335 (1993); https://doi.org/10.1080/15533179308016690.
N.K. Fayad and H.A Taghreed, Adv. Phys. Theories Appl., 9, 1 (2012).
N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); https://doi.org/10.1007/BF02708270.
N.T. Yulia, Proton NMR studies of Functionalized Nanoparticles in Aqueous Environments, University of Iowa, Spring (2014).
M. Nasim, P. Tharmaraj and P.S. Venkataramani, Synth. React. Inorg. Met.-Org. Chem., 29, 1249 (1999); https://doi.org/10.1080/00945719909349526.
D.C. Sulikowska, A. Malinowska and J.R. Doczekalska, Pol. J. Chem., 74, 607 (2000).
M. Priebe, J. Widmer, N. Suhartha Löwa, S.-L. Abram, I. Mottas, A.-K. Woischnig, P.S. Brunetto, N. Khanna, C. Bourquin and K.M. Fromm, Nanomedicine, 13, 11 (2017); https://doi.org/10.1016/j.nano.2016.08.002.
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez and M.J. Yacaman, Nanotechnology, 16, 2346 (2005); https://doi.org/10.1088/0957-4484/16/10/059.
S. Svensson, F. Suska, L. Emanuelsson, A. Palmquist, B. Norlindh, M. Trobos, H. Bäckros, L. Persson, G. Rydja, M. Ohrlander, B. Lyvén, J. Lausmaa and P. Thomsen, Nanomedicine NBM, 9, 1048 (2013); https://doi.org/10.1016/j.nano.2013.04.009.
S. Mohanty, S. Mishra, P. Jena, B. Jacob, B. Sarkar and A. Sonawane, Nanomedicine NBM, 8, 916 (2012); https://doi.org/10.1016/j.nano.2011.11.007.