Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization Properties and Characterization of Green Synthesis of Copper Oxide Nanoparticles Using Aqueous Extract of Cordia myxa L. Leaves
Corresponding Author(s) : N.A. Thamer
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Copper oxide nanoparticles (CuONPs) were green synthesized using aqueous extract of Cordia myxa L. leaves as reducing and capping agent. The synthesized nanoparticles were characterized by UV-visible spectrophotometer, FTIR, X-ray diffraction, scanning electron microscope and atomic force microscope. The prepared copper oxide nanoparticles showed surface plasmon resonance centered at 400 nm. The optimized condition for the synthesis of copper nanoparticles revealed that the aqueous extract of Cordia myxa L. leaves:copper sulfate ratio was 1:3, pH was 9 and copper sulfate concentration was 40 mM. FTIR results showed that stabilization and formation of CuONPs were due to phenolic groups and amines in plant extract. The XRD pattern showed that the particles are monoclinic in nature. The crystalline morphology and size of the nanoparticles were determined by scanning electron microscope. Presence of elemental copper was revealed by EDX analysis. Size range was from 20 to 106.81 nm was determined by atomic force microscope.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Zhou, R. Wang, B. Xu and Y. Li, Nanotechnology, 17, 3939 (2006); https://doi.org/10.1088/0957-4484/17/15/055.
- A. Hedayati, H. Kolangi, A. Jahanbakhshi and F. Shaluei, Bulg. J. Vet. Med., 15, 172 (2012).
- K. Inouea, H. Takano, R. Yanagisawa, E. Koike and A. Shimada Toxicol. Appl. Pharmacol., 234, 68 (2009); https://doi.org/10.1016/j.taap.2008.09.012.
- K.S. Khashan, G.M. Sulaiman and F.A. Abdulameer, Arab. J. Sci. Eng., 41, 301 (2016); https://doi.org/10.1007/s13369-015-1733-7.
- J. Park, J.S.G. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Chem. Int. Ed, 46, 4630 (2007); https://doi.org/10.1002/anie.200603148.
- F. Marabelli, G.B. Parravicini and F. Salghetti-Drioli, Phys. Rev. B, 52, 1433 (1995); https://doi.org/10.1103/PhysRevB.52.1433.
- H. El-Trass, I. Elshamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 258, 2997 (2012); https://doi.org/10.1016/j.apsusc.2011.11.025.
- M.J. Guajardo-Pacheco, J.E. Morales-Sánchez, J. González-Hernández and F. Ruiz, Mater. Lett., 64, 1361 (2010); https://doi.org/10.1016/j.matlet.2010.03.029.
- N. Kröger, R. Deutzmann and M. Sumper, Science, 286, 1129 (1999); https://doi.org/10.1126/science.286.5442.1129.
- G.A.K. Reddy, J.M. Joy, T. Mitra, S. Shabnam and T. Shilpa, Int. J. Adv. Pharm., 2, 9 (2012).
- S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b.
- J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao and N. He, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104.
- M. Ranjbar, H.N. Varzi, A. Sabbagh, A. Bolooki and A. Sazmand, Pak. J. Biol. Sci., 16, 2066 (2013); https://doi.org/10.3923/pjbs.2013.2066.2069.
- B. Anuj, A. Rajalakshmi, N. Krithega, S. Gurupavaithra and A. Jayachitra, Int. J. Biol. Pharm. Res., 5, 511 (2014).
- U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145.
- S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152.
- M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B.A. Ritzo, V.P. Drachev and V.M. Shalaev, Appl. Phys. B, 86, 455 (2007); https://doi.org/10.1007/s00340-006-2401-0.
- H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015); https://doi.org/10.1016/j.jtusci.2014.04.006.
- R. Cuevas, N. Duran, M.C. Diez, G.R. Tortella and O. Rubilar, J. Nanomater., 2015, 1 (2015); https://doi.org/10.1155/2015/789089.
- A. Moores and F. Goettmann, New J. Chem., 30, 1121 (2006); https://doi.org/10.1039/b604038c.
- G. Mie, Ann. Phys., 330, 377 (1908); https://doi.org/10.1002/andp.19083300302.
- N.T.K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114, 7610 (2014); https://doi.org/10.1021/cr400544s.
- D. Mott, J. Luo, A. Smith, P.N. Njoki, L. Wang and C.J. Zhong, Nanoscale Res. Lett., 2, 12 (2007); https://doi.org/10.1007/s11671-006-9022-8.
- D. Mott, J. Galkowski, L. Wang, J. Luo and C.J. Zhong, Langmuir, 23, 5740 (2007); https://doi.org/10.1021/la0635092.
- G. Caroling, M.N. Priyadharshini, E. Vinodhini, A.M. Ranjitham and P. Shanthi, Int. J. Pharm. Biol. Sci., 5, 25 (2015).
- T.K. Sau, A. Pal and T. Pal, J. Phys. Chem. B, 105, 9266 (2001); https://doi.org/10.1021/jp011420t.
- R.A. Soomro, S.T. Hussain, S. Sirajuddin, N. Memon, M.R. Shah, N.H. Kalwar, K.R. Hallam and A. Sha, Adv. Mat. Lett., 5, 191 (2014); https://doi.org/10.5185/amlett.2013.8541.
- N.I. Hulkoti and T.C. Taranath, Colloids Surf. B Biointerfaces, 121, 474 (2014); https://doi.org/10.1016/j.colsurfb.2014.05.027.
- M. Sathishkumar, K. Sneha and Y.S. Yun, Bioresour. Technol., 101, 7958 (2010); https://doi.org/10.1016/j.biortech.2010.05.051.
- S.P. Dubey, M. Lahtinen and M. Sillanpaa, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024.
- M.R. Salvadori, L.F. Lepre, R.A. Ando, C.A.O. do Nascimento and B. Correa, PLoS One, 8, e80519 (2013) https://doi.org/10.1371/journal.pone.0080519.
- K.B. Narayanan and N. Sakthivel, Mater. Charact., 61, 1232 (2010); https://doi.org/10.1016/j.matchar.2010.08.003.
- K. Karthik, N.V. Jaya, M. Kanagaraj and S. Arumugam, Solid State Commun., 151, 564 (2011); https://doi.org/10.1016/j.ssc.2011.01.008.
- A. Ahmed, P. Elvatia and A. Violi, RSC Adv., 5, 35033 (2015); https://doi.org/10.1039/C5RA04276C.
- R. Dastjerdi and M. Montazer, Colloids Surf. B Biointerfaces, 79, 5 (2010); https://doi.org/10.1016/j.colsurfb.2010.03.029.
- D. Sharma, S. Kanchi and K. Bisetty, Arab. J. Chem., (2015); https://doi.org/10.1016/j.arabjc.2015.11.002.
- T. Raju and P. Sabhapathy, Asian J. Chem., 27, 23 (2015); https://doi.org/10.14233/ajchem.2015.16657.
- K.L. Niraimath, R. Lavany, V. Sudh, R. Narendra and P. Brindh, J. Pharm. Res., 10, 29 (2016).
- P. Eaton, P. Quaresma, C. Soares, C. Neves, M.P. de Almeida, E. Pereira and P. West, Ultramicroscopy, 182, 179 (2017); https://doi.org/10.1016/j.ultramic.2017.07.001.
References
K. Zhou, R. Wang, B. Xu and Y. Li, Nanotechnology, 17, 3939 (2006); https://doi.org/10.1088/0957-4484/17/15/055.
A. Hedayati, H. Kolangi, A. Jahanbakhshi and F. Shaluei, Bulg. J. Vet. Med., 15, 172 (2012).
K. Inouea, H. Takano, R. Yanagisawa, E. Koike and A. Shimada Toxicol. Appl. Pharmacol., 234, 68 (2009); https://doi.org/10.1016/j.taap.2008.09.012.
K.S. Khashan, G.M. Sulaiman and F.A. Abdulameer, Arab. J. Sci. Eng., 41, 301 (2016); https://doi.org/10.1007/s13369-015-1733-7.
J. Park, J.S.G. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Chem. Int. Ed, 46, 4630 (2007); https://doi.org/10.1002/anie.200603148.
F. Marabelli, G.B. Parravicini and F. Salghetti-Drioli, Phys. Rev. B, 52, 1433 (1995); https://doi.org/10.1103/PhysRevB.52.1433.
H. El-Trass, I. Elshamy, I. El-Mehasseb and M. El-Kemary, Appl. Surf. Sci., 258, 2997 (2012); https://doi.org/10.1016/j.apsusc.2011.11.025.
M.J. Guajardo-Pacheco, J.E. Morales-Sánchez, J. González-Hernández and F. Ruiz, Mater. Lett., 64, 1361 (2010); https://doi.org/10.1016/j.matlet.2010.03.029.
N. Kröger, R. Deutzmann and M. Sumper, Science, 286, 1129 (1999); https://doi.org/10.1126/science.286.5442.1129.
G.A.K. Reddy, J.M. Joy, T. Mitra, S. Shabnam and T. Shilpa, Int. J. Adv. Pharm., 2, 9 (2012).
S. Iravani, Green Chem., 13, 2638 (2011); https://doi.org/10.1039/c1gc15386b.
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao and N. He, Nanotechnology, 18, 105104 (2007); https://doi.org/10.1088/0957-4484/18/10/105104.
M. Ranjbar, H.N. Varzi, A. Sabbagh, A. Bolooki and A. Sazmand, Pak. J. Biol. Sci., 16, 2066 (2013); https://doi.org/10.3923/pjbs.2013.2066.2069.
B. Anuj, A. Rajalakshmi, N. Krithega, S. Gurupavaithra and A. Jayachitra, Int. J. Biol. Pharm. Res., 5, 511 (2014).
U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011); https://doi.org/10.1038/nnano.2011.145.
S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004); https://doi.org/10.1038/nmat1152.
M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B.A. Ritzo, V.P. Drachev and V.M. Shalaev, Appl. Phys. B, 86, 455 (2007); https://doi.org/10.1007/s00340-006-2401-0.
H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh and H. Nagabhushana, J. Taibah Univ. Sci., 9, 7 (2015); https://doi.org/10.1016/j.jtusci.2014.04.006.
R. Cuevas, N. Duran, M.C. Diez, G.R. Tortella and O. Rubilar, J. Nanomater., 2015, 1 (2015); https://doi.org/10.1155/2015/789089.
A. Moores and F. Goettmann, New J. Chem., 30, 1121 (2006); https://doi.org/10.1039/b604038c.
G. Mie, Ann. Phys., 330, 377 (1908); https://doi.org/10.1002/andp.19083300302.
N.T.K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114, 7610 (2014); https://doi.org/10.1021/cr400544s.
D. Mott, J. Luo, A. Smith, P.N. Njoki, L. Wang and C.J. Zhong, Nanoscale Res. Lett., 2, 12 (2007); https://doi.org/10.1007/s11671-006-9022-8.
D. Mott, J. Galkowski, L. Wang, J. Luo and C.J. Zhong, Langmuir, 23, 5740 (2007); https://doi.org/10.1021/la0635092.
G. Caroling, M.N. Priyadharshini, E. Vinodhini, A.M. Ranjitham and P. Shanthi, Int. J. Pharm. Biol. Sci., 5, 25 (2015).
T.K. Sau, A. Pal and T. Pal, J. Phys. Chem. B, 105, 9266 (2001); https://doi.org/10.1021/jp011420t.
R.A. Soomro, S.T. Hussain, S. Sirajuddin, N. Memon, M.R. Shah, N.H. Kalwar, K.R. Hallam and A. Sha, Adv. Mat. Lett., 5, 191 (2014); https://doi.org/10.5185/amlett.2013.8541.
N.I. Hulkoti and T.C. Taranath, Colloids Surf. B Biointerfaces, 121, 474 (2014); https://doi.org/10.1016/j.colsurfb.2014.05.027.
M. Sathishkumar, K. Sneha and Y.S. Yun, Bioresour. Technol., 101, 7958 (2010); https://doi.org/10.1016/j.biortech.2010.05.051.
S.P. Dubey, M. Lahtinen and M. Sillanpaa, Process Biochem., 45, 1065 (2010); https://doi.org/10.1016/j.procbio.2010.03.024.
M.R. Salvadori, L.F. Lepre, R.A. Ando, C.A.O. do Nascimento and B. Correa, PLoS One, 8, e80519 (2013) https://doi.org/10.1371/journal.pone.0080519.
K.B. Narayanan and N. Sakthivel, Mater. Charact., 61, 1232 (2010); https://doi.org/10.1016/j.matchar.2010.08.003.
K. Karthik, N.V. Jaya, M. Kanagaraj and S. Arumugam, Solid State Commun., 151, 564 (2011); https://doi.org/10.1016/j.ssc.2011.01.008.
A. Ahmed, P. Elvatia and A. Violi, RSC Adv., 5, 35033 (2015); https://doi.org/10.1039/C5RA04276C.
R. Dastjerdi and M. Montazer, Colloids Surf. B Biointerfaces, 79, 5 (2010); https://doi.org/10.1016/j.colsurfb.2010.03.029.
D. Sharma, S. Kanchi and K. Bisetty, Arab. J. Chem., (2015); https://doi.org/10.1016/j.arabjc.2015.11.002.
T. Raju and P. Sabhapathy, Asian J. Chem., 27, 23 (2015); https://doi.org/10.14233/ajchem.2015.16657.
K.L. Niraimath, R. Lavany, V. Sudh, R. Narendra and P. Brindh, J. Pharm. Res., 10, 29 (2016).
P. Eaton, P. Quaresma, C. Soares, C. Neves, M.P. de Almeida, E. Pereira and P. West, Ultramicroscopy, 182, 179 (2017); https://doi.org/10.1016/j.ultramic.2017.07.001.