Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Degradation of Methylene Blue Dye Using Chitosan Silica Composite
Corresponding Author(s) : M. Makeswari
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
The ability of chitosan silica composite for the degradation of methylene blue dye from aqueous solution is studied by direct sunlight irradiation. Batch mode adsorption experiments are carried out to know the degradation capacity of the composite. Maximum removal efficiency 89.05 % of methylene blue is achieved at pH 10 with composite dosage of 0.1 g. Langmuir and Freundlich adsorption isotherm models are used to fit the obtained adsorption data. The maximum adsorption capacity is found to be 11.467 mg/g for the adsorption of methylene blue. The kinetic data is well fitted with pseudo first order kinetics. Degradation ability of methylene blue is confirmed by UV spectra studies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Madhavakrishnan, K. Manickavasagam, R. Vasanthakumar, K. Rasappan, R. Mohanraj and S. Pattabhi, E-J. Chem., 6, 1109 (2009); https://doi.org/10.1155/2009/764197.
- K. Bhattacharyya and A. Sharma, Dyes Pigments, 65, 51 (2005); https://doi.org/10.1016/j.dyepig.2004.06.016.
- D. Ghosh and K.G. Bhattacharyya, Appl. Clay Sci., 20, 295 (2002); https://doi.org/10.1016/S0169-1317(01)00081-3.
- H. Choi, E. Stathatos and D.D. Dionysiou, Desalination, 202, 199 (2007); https://doi.org/10.1016/j.desal.2005.12.055.
- A. Dabrowski, Adv. Colloid Interface Sci., 93, 135 (2001); https://doi.org/10.1016/S0001-8686(00)00082-8.
- M.S. Chiou and G.S. Chuang, Chemosphere, 62, 731 (2006); https://doi.org/10.1016/j.chemosphere.2005.04.068.
- I.A. Salem and M. El-maazawi, Chemosphere, 41, 1173 (2000); https://doi.org/10.1016/S0045-6535(00)00009-6.
- O.S. Bello, M.A. Ahmad and T.T. Siang, Trends Appl. Sci. Res., 6, 794 (2011); https://doi.org/10.3923/tasr.2011.794.812.
- G. Kyzas and D. Bikiari, Mar. Drugs, 13, 312 (2015); https://doi.org/10.3390/md13010312.
- 10.Y. Haldorai and J.-J. Shim, Compos. Interfaces, 20, 365 (2013); https://doi.org/10.1080/15685543.2013.806124.
- S. Dhanavel, E.A.K. Nivethaa, V. Narayanan and A. Stephen, Int. J. Chemtech Res., 6, 1880 (2014).
- S. Shahabuddin, N.M. Sarih, F.H. Ismail, M.M. Shahid and N.M. Huang, RSC Adv., 5, 83857 (2015); https://doi.org/10.1039/C5RA11237K.
- Y. Haldorai and J.-J. Shim, Int. J. Photoenergy, 2013, 1 (2013); https://doi.org/10.1155/2013/245646.
- C.E. Zubieta, P.V. Messina, C. Luengo, M. Dennehy, O. Pieroni and P.C. Schulz, J. Hazard. Mater., 152, 765 (2008); https://doi.org/10.1016/j.jhazmat.2007.07.043.
- H. Yoshida, M.G. Chaskar, Y. Kato and T. Hattori, J. Photochem. Photobiol. Chem., 160, 47 (2003); https://doi.org/10.1016/S1010-6030(03)00220-X.
- L. Yuliati, T. Hattori and H. Yoshida, Phys. Chem. Chem. Phys., 7, 195 (2005); https://doi.org/10.1039/b410089a.
- T.M. Budnyak, I.V. Pylypchuk,V.A. Tertykh, E.S. Yanovska and D. Kolodynska, Nanoscale Res. Lett., 10, 87 (2015); https://doi.org/10.1186/s11671-014-0722-1.
- P. Saraswathi and M. Makeswari, Rasayan J. Chem., 10, 759 (2017); https://doi.org/10.7324/RJC.2017.1031752.
- N. Madhusudhana, K. Yogendra and M.K. Mahadevan, Res. J. Chem. Sci., 2, 72 (2012).
- M.A.H. Devadi, M. Krishna, H.N.N. Murthy and B.S. Sathyanarayana, Procedia Mater. Sci., 5, 612 (2014); https://doi.org/10.1016/j.mspro.2014.07.307.
- R. Kumar, J. Rashid and M.A. Barakat, Colloid. Interf. Sci.Commun., 5, 1 (2015); https://doi.org/10.1016/j.colcom.2015.05.001.
- M. Makeswari and T. Santhi, Int. J. Mod. Eng. Res. Technol., 3, 3255 (2013).
- Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng and Y. Wu, Water Res., 67, 330 (2014); https://doi.org/10.1016/j.watres.2014.09.026.
- K.L. Ameta, N. Papnai and R. Ameta, Orbital E-J. Chem., 6, 14 (2014).
- A. Higazy, M. Hashem, A. ElShafei, N. Shaker and M.A. Hady, Carbohydr. Polym., 79, 867 (2010); https://doi.org/10.1016/j.carbpol.2009.10.011.
- Y.L. Min, K. Zhang, Y.C. Chen and Y.G. Zhang, Sep. Purif. Technol., 86, 98 (2012); https://doi.org/10.1016/j.seppur.2011.10.025.
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
- H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723.
- Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998a); https://doi.org/10.1016/S0923-0467(98)00076-1.
- Y.S. Ho and G. Mckay, Process Saf. Environ. Prot., 76, 183 (1998); https://doi.org/10.1205/095758298529326.
References
S. Madhavakrishnan, K. Manickavasagam, R. Vasanthakumar, K. Rasappan, R. Mohanraj and S. Pattabhi, E-J. Chem., 6, 1109 (2009); https://doi.org/10.1155/2009/764197.
K. Bhattacharyya and A. Sharma, Dyes Pigments, 65, 51 (2005); https://doi.org/10.1016/j.dyepig.2004.06.016.
D. Ghosh and K.G. Bhattacharyya, Appl. Clay Sci., 20, 295 (2002); https://doi.org/10.1016/S0169-1317(01)00081-3.
H. Choi, E. Stathatos and D.D. Dionysiou, Desalination, 202, 199 (2007); https://doi.org/10.1016/j.desal.2005.12.055.
A. Dabrowski, Adv. Colloid Interface Sci., 93, 135 (2001); https://doi.org/10.1016/S0001-8686(00)00082-8.
M.S. Chiou and G.S. Chuang, Chemosphere, 62, 731 (2006); https://doi.org/10.1016/j.chemosphere.2005.04.068.
I.A. Salem and M. El-maazawi, Chemosphere, 41, 1173 (2000); https://doi.org/10.1016/S0045-6535(00)00009-6.
O.S. Bello, M.A. Ahmad and T.T. Siang, Trends Appl. Sci. Res., 6, 794 (2011); https://doi.org/10.3923/tasr.2011.794.812.
G. Kyzas and D. Bikiari, Mar. Drugs, 13, 312 (2015); https://doi.org/10.3390/md13010312.
10.Y. Haldorai and J.-J. Shim, Compos. Interfaces, 20, 365 (2013); https://doi.org/10.1080/15685543.2013.806124.
S. Dhanavel, E.A.K. Nivethaa, V. Narayanan and A. Stephen, Int. J. Chemtech Res., 6, 1880 (2014).
S. Shahabuddin, N.M. Sarih, F.H. Ismail, M.M. Shahid and N.M. Huang, RSC Adv., 5, 83857 (2015); https://doi.org/10.1039/C5RA11237K.
Y. Haldorai and J.-J. Shim, Int. J. Photoenergy, 2013, 1 (2013); https://doi.org/10.1155/2013/245646.
C.E. Zubieta, P.V. Messina, C. Luengo, M. Dennehy, O. Pieroni and P.C. Schulz, J. Hazard. Mater., 152, 765 (2008); https://doi.org/10.1016/j.jhazmat.2007.07.043.
H. Yoshida, M.G. Chaskar, Y. Kato and T. Hattori, J. Photochem. Photobiol. Chem., 160, 47 (2003); https://doi.org/10.1016/S1010-6030(03)00220-X.
L. Yuliati, T. Hattori and H. Yoshida, Phys. Chem. Chem. Phys., 7, 195 (2005); https://doi.org/10.1039/b410089a.
T.M. Budnyak, I.V. Pylypchuk,V.A. Tertykh, E.S. Yanovska and D. Kolodynska, Nanoscale Res. Lett., 10, 87 (2015); https://doi.org/10.1186/s11671-014-0722-1.
P. Saraswathi and M. Makeswari, Rasayan J. Chem., 10, 759 (2017); https://doi.org/10.7324/RJC.2017.1031752.
N. Madhusudhana, K. Yogendra and M.K. Mahadevan, Res. J. Chem. Sci., 2, 72 (2012).
M.A.H. Devadi, M. Krishna, H.N.N. Murthy and B.S. Sathyanarayana, Procedia Mater. Sci., 5, 612 (2014); https://doi.org/10.1016/j.mspro.2014.07.307.
R. Kumar, J. Rashid and M.A. Barakat, Colloid. Interf. Sci.Commun., 5, 1 (2015); https://doi.org/10.1016/j.colcom.2015.05.001.
M. Makeswari and T. Santhi, Int. J. Mod. Eng. Res. Technol., 3, 3255 (2013).
Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng and Y. Wu, Water Res., 67, 330 (2014); https://doi.org/10.1016/j.watres.2014.09.026.
K.L. Ameta, N. Papnai and R. Ameta, Orbital E-J. Chem., 6, 14 (2014).
A. Higazy, M. Hashem, A. ElShafei, N. Shaker and M.A. Hady, Carbohydr. Polym., 79, 867 (2010); https://doi.org/10.1016/j.carbpol.2009.10.011.
Y.L. Min, K. Zhang, Y.C. Chen and Y.G. Zhang, Sep. Purif. Technol., 86, 98 (2012); https://doi.org/10.1016/j.seppur.2011.10.025.
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723.
Y.S. Ho and G. McKay, Chem. Eng. J., 70, 115 (1998a); https://doi.org/10.1016/S0923-0467(98)00076-1.
Y.S. Ho and G. Mckay, Process Saf. Environ. Prot., 76, 183 (1998); https://doi.org/10.1205/095758298529326.