Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Preparation of Graphene Oxide/Bacterial Cellulose Nanocomposite via in situ Process in Agitated Culture
Corresponding Author(s) : S. Gea
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Graphene oxide/bacterial cellulose (GO/BC) nanocomposite has been successfully carried out with in situ process in agitated culture. During the in situ process, graphene oxide was partially reduced. Interaction between bacterial cellulose and graphene oxide was investigated by FTIR. The addition of graphene oxide improved the thermal and mechanical properties of nanocomposite. This is indicated by increasing residual mass from 29.41 % of GO/BC 0.04 wt % to 33.91 % of GO/BC 0.1 wt %. When compared to pristine bacterial cellulose, GO/BC 0.1 wt % nanocomposite increased in tensile strength from 50.5 MPa to 102.7 MPa and Young’s modulus from 2.0 GPa to 8.3 GPa. The morphology of nanocomposite films is presented that graphene oxide is well dispersed in the network of bacterial cellulose, but the agitation method is significantly enlarged the pores between fibril and also minimized the sizes of fibril, in which the average size of bacterial cellulose fibril dan pores are 68 nm and 440 nm, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.N. Coleman, U. Khan and Y.K. Gun’ko, Adv. Mater., 18, 689 (2006); https://doi.org/10.1002/adma.200501851.
- R. Liu, S. Liang, X.Z. Tang, D. Yan, X. Li and Z.Z. Yu, J. Mater. Chem., 22, 14160 (2012); https://doi.org/10.1039/c2jm32541a.
- S. Ye, J. Feng and P. Wu, J. Mater. Chem. A Mater. Energy Sustain., 1, 3495 (2013); https://doi.org/10.1039/c2ta01142e.
- H.W. Liu, S.H. Hu, Y.-W. Chen and S.-Y. Chen, J. Mater. Chem., 22, 17311 (2012); https://doi.org/10.1039/c2jm32772d.
- S. Ye, J. Feng and P. Wu, J. Mater. Chem., 1, 3495 (2013); https://doi.org/10.1039/c2ta01142e.
- Y. Zeng, L. Qiu, K. Wang, J. Yao, D. Li, G.P. Simon, R. Wang and H. Wang, RSC Adv., 3, 887 (2013); https://doi.org/10.1039/C2RA22173J.
- J.M. Malho, P. Laaksonen, A. Walther, O. Ikkala and M.B. Linder, Biomacromolecules, 13, 1093 (2012); https://doi.org/10.1021/bm2018189.
- M. Ishihara, M. Matsunaga, N. Hayashi and V. Tisler, Enzyme Microb. Technol., 31, 986 (2002); https://doi.org/10.1016/S0141-0229(02)00215-6.
- D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Prog. Polym. Sci., 26, 1561 (2001); https://doi.org/10.1016/S0079-6700(01)00021-1.
- O. Shezad, S. Khan, T. Khan and J.K. Park, Korean J. Chem. Eng., 26, 1689 (2009); https://doi.org/10.1007/s11814-009-0232-5.
- E.J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris and P. De Wulf, Polym. Degrad. Stab., 59, 93 (1998); https://doi.org/10.1016/S0141-3910(97)00185-7.
- L.J. Cote, F. Kim and J. Huang, J. Am. Chem. Soc., 131, 1043 (2009); https://doi.org/10.1021/ja806262m.
- J.W. Suk, R.D. Piner, J. An and R.S. Ruoff, ACS Nano, 4, 6557 (2010); https://doi.org/10.1021/nn101781v.
- J. Becerril, Z. Mao, R.M. Liu, Z. Stoltenberg, Y. Bao and Y. Chen, ACS Nano, 2, 463 (2008); https://doi.org/10.1021/nn700375n.
- H. Si, H. Luo, G. Xiong, Z. Yang, S.R. Raman, Macromol. Rapid Commun., 35, 1706 (2014); https://doi.org/10.1002/marc.201400239.
- Y. Feng, X. Zhang, Y. Shen, K. Yoshino and W. Feng, Carbohydr. Polym., 87, 644 (2012); https://doi.org/10.1016/j.carbpol.2011.08.039.
- S. Gea, E. Bilotti, C. Reynolds, N. Soykeabkeaw and T. Peijs, Mater. Lett., 64, 901 (2010); https://doi.org/10.1016/j.matlet.2010.01.042.
- H. Nainggolan, S. Gea, E. Bilotti, T. Peijs and S.D. Hutagalung, Beilstein J. Nanotechnol., 4, 325 (2013); https://doi.org/10.3762/bjnano.4.37.
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017.
- G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng and Q. Wu, J. Mater. Sci., 47, 4400 (2012); https://doi.org/10.1007/s10853-012-6294-5.
- A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and I. Dekany, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h.
- R.M. Silverstein, G.C. Basser and T.C. Masrill, Spectrometric Identification of Organic Compound, John Wiley & Sons, Inc., New York, edn 5 (1991).
- S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T.T. Nguyen and R.S. Ruoff, ACS Nano, 2, 572 (2008); https://doi.org/10.1021/nn700349a.
- A.G. Nandgaonkar, Q. Wang, K. Fu, W.E. Krause, Q. Wei, R. Gorga and L.A. Lucia, Green Chem., 16, 3195 (2014); https://doi.org/10.1039/C4GC00264D.
- S.Y. Oh, D. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park and J.H. Youk, Carbohydr. Res., 340, 2376 (2005); https://doi.org/10.1016/j.carres.2005.08.007.
- N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); https://doi.org/10.1021/cm981085u.
- S.H. Moon, J.M. Park, H.-Y. Chun and S.-J. Kim, Biotechnol. Bioprocess Eng.; BBE, 11, 26 (2006); https://doi.org/10.1007/BF02931864.
- W. Hu, S. Chen, B. Zhou and H. Wang, Mater. Sci. Eng. B, 170, 88 (2010); https://doi.org/10.1016/j.mseb.2010.02.034.
- W. Shao, H. Liu, X. Liu, S. Wang and R. Zhang, RSC Adv., 5, 4795 (2015); https://doi.org/10.1039/C4RA13057J.
- Z. Yan, S. Chen, H. Wang, B. Wang and J. Jiang, Carbohydr. Polym., 74, 659 (2008); https://doi.org/10.1016/j.carbpol.2008.04.028.
- S. Jeon, Y.M. Yoo, J.W. Park, H.J. Kim and J. Hyun, Curr. Appl. Phys., 14, 1621 (2014); https://doi.org/10.1016/j.cap.2014.07.010.
References
J.N. Coleman, U. Khan and Y.K. Gun’ko, Adv. Mater., 18, 689 (2006); https://doi.org/10.1002/adma.200501851.
R. Liu, S. Liang, X.Z. Tang, D. Yan, X. Li and Z.Z. Yu, J. Mater. Chem., 22, 14160 (2012); https://doi.org/10.1039/c2jm32541a.
S. Ye, J. Feng and P. Wu, J. Mater. Chem. A Mater. Energy Sustain., 1, 3495 (2013); https://doi.org/10.1039/c2ta01142e.
H.W. Liu, S.H. Hu, Y.-W. Chen and S.-Y. Chen, J. Mater. Chem., 22, 17311 (2012); https://doi.org/10.1039/c2jm32772d.
S. Ye, J. Feng and P. Wu, J. Mater. Chem., 1, 3495 (2013); https://doi.org/10.1039/c2ta01142e.
Y. Zeng, L. Qiu, K. Wang, J. Yao, D. Li, G.P. Simon, R. Wang and H. Wang, RSC Adv., 3, 887 (2013); https://doi.org/10.1039/C2RA22173J.
J.M. Malho, P. Laaksonen, A. Walther, O. Ikkala and M.B. Linder, Biomacromolecules, 13, 1093 (2012); https://doi.org/10.1021/bm2018189.
M. Ishihara, M. Matsunaga, N. Hayashi and V. Tisler, Enzyme Microb. Technol., 31, 986 (2002); https://doi.org/10.1016/S0141-0229(02)00215-6.
D. Klemm, D. Schumann, U. Udhardt and S. Marsch, Prog. Polym. Sci., 26, 1561 (2001); https://doi.org/10.1016/S0079-6700(01)00021-1.
O. Shezad, S. Khan, T. Khan and J.K. Park, Korean J. Chem. Eng., 26, 1689 (2009); https://doi.org/10.1007/s11814-009-0232-5.
E.J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris and P. De Wulf, Polym. Degrad. Stab., 59, 93 (1998); https://doi.org/10.1016/S0141-3910(97)00185-7.
L.J. Cote, F. Kim and J. Huang, J. Am. Chem. Soc., 131, 1043 (2009); https://doi.org/10.1021/ja806262m.
J.W. Suk, R.D. Piner, J. An and R.S. Ruoff, ACS Nano, 4, 6557 (2010); https://doi.org/10.1021/nn101781v.
J. Becerril, Z. Mao, R.M. Liu, Z. Stoltenberg, Y. Bao and Y. Chen, ACS Nano, 2, 463 (2008); https://doi.org/10.1021/nn700375n.
H. Si, H. Luo, G. Xiong, Z. Yang, S.R. Raman, Macromol. Rapid Commun., 35, 1706 (2014); https://doi.org/10.1002/marc.201400239.
Y. Feng, X. Zhang, Y. Shen, K. Yoshino and W. Feng, Carbohydr. Polym., 87, 644 (2012); https://doi.org/10.1016/j.carbpol.2011.08.039.
S. Gea, E. Bilotti, C. Reynolds, N. Soykeabkeaw and T. Peijs, Mater. Lett., 64, 901 (2010); https://doi.org/10.1016/j.matlet.2010.01.042.
H. Nainggolan, S. Gea, E. Bilotti, T. Peijs and S.D. Hutagalung, Beilstein J. Nanotechnol., 4, 325 (2013); https://doi.org/10.3762/bjnano.4.37.
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017.
G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng and Q. Wu, J. Mater. Sci., 47, 4400 (2012); https://doi.org/10.1007/s10853-012-6294-5.
A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and I. Dekany, Langmuir, 19, 6050 (2003); https://doi.org/10.1021/la026525h.
R.M. Silverstein, G.C. Basser and T.C. Masrill, Spectrometric Identification of Organic Compound, John Wiley & Sons, Inc., New York, edn 5 (1991).
S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T.T. Nguyen and R.S. Ruoff, ACS Nano, 2, 572 (2008); https://doi.org/10.1021/nn700349a.
A.G. Nandgaonkar, Q. Wang, K. Fu, W.E. Krause, Q. Wei, R. Gorga and L.A. Lucia, Green Chem., 16, 3195 (2014); https://doi.org/10.1039/C4GC00264D.
S.Y. Oh, D. Yoo, Y. Shin, H.C. Kim, H.Y. Kim, Y.S. Chung, W.H. Park and J.H. Youk, Carbohydr. Res., 340, 2376 (2005); https://doi.org/10.1016/j.carres.2005.08.007.
N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva and A.D. Gorchinskiy, Chem. Mater., 11, 771 (1999); https://doi.org/10.1021/cm981085u.
S.H. Moon, J.M. Park, H.-Y. Chun and S.-J. Kim, Biotechnol. Bioprocess Eng.; BBE, 11, 26 (2006); https://doi.org/10.1007/BF02931864.
W. Hu, S. Chen, B. Zhou and H. Wang, Mater. Sci. Eng. B, 170, 88 (2010); https://doi.org/10.1016/j.mseb.2010.02.034.
W. Shao, H. Liu, X. Liu, S. Wang and R. Zhang, RSC Adv., 5, 4795 (2015); https://doi.org/10.1039/C4RA13057J.
Z. Yan, S. Chen, H. Wang, B. Wang and J. Jiang, Carbohydr. Polym., 74, 659 (2008); https://doi.org/10.1016/j.carbpol.2008.04.028.
S. Jeon, Y.M. Yoo, J.W. Park, H.J. Kim and J. Hyun, Curr. Appl. Phys., 14, 1621 (2014); https://doi.org/10.1016/j.cap.2014.07.010.