Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Oxidized Cellulose Fibers for Reinforment in Poly(Lactic Acid) Based Composite
Corresponding Author(s) : F.A. Syamani
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
Incompatiblity between poly(lactic acid) (PLA) and cellulose fibers due to hydrophilicity of cellulose fibers becomes the main problem in PLA-cellulose fibers composite production. Chemical modifications of cellulose fibers such as acetylation, benzoylation or acrylation have been conducted to improve the adhesion between polymer matrix and cellulose fibers. One of chemical modifications, oxidation using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) could increase hydrophobicity of cellulose fibers without changing its fibrous morphology. However, TEMPO oxidation requires sodium bromide, HCl and chlorite that could give negative impact to the enviroment. In this study, oxidation of cellulose fibers was conducted using sodium metaperiodate (1 mol equivalent per mole of anhydroglucose unit in the cellulose) at room temperature and varied reaction time (3, 4, 5, 6 h). Subsequently, never dried the oxidized cellulose fibers were incorporated into poly(lactic acid) and gycerol triacetate to produce composite. The chemical structure changes and thermal properties of oxidized cellulose fibers were analyzed using FTIR and DSC. The mechanical properties of the resulting composite were tested using universal testing machine based on ASTM D882-75b.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Lee, S. Wang, G.M. Pharr and H. Xu, Composites Part A, 38, 1517 (2007); https://doi.org/10.1016/j.compositesa.2007.01.007.
- A.N. Nakagaito, A. Fujimura, T. Sakai, Y. Hama and H. Yano, Compos. Sci. Technol., 69, 1293 (2009); https://doi.org/10.1016/j.compscitech.2009.03.004.
- L. Suryanegara, A.N. Nakagaito and H. Yano, Compos. Sci. Technol., 69, 1187 (2009); https://doi.org/10.1016/j.compscitech.2009.02.022.
- M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak and O.J. Rojas, Biomacromolecules, 11, 674 (2010); https://doi.org/10.1021/bm901254n.
- A. Sdrobis, R.N. Darie, M. Totolin, G. Cazacu and C. Vasile, Composites Part B, 43, 1873 (2012); https://doi.org/10.1016/j.compositesb.2012.01.064.
- R. Chollakup, W. Smitthipong, W. Kongtud and R. Tantatherdtam, J. Adhes. Sci. Technol., 27, 1290 (2013); https://doi.org/10.1080/01694243.2012.694275.
- T.A. Dankovich and Y.L. Hsieh, Cellulose, 14, 469 (2007); https://doi.org/10.1007/s10570-007-9132-1.
- P. Uschanov, L.S. Johansson, S.L. Maunu and J. Laine, Cellulose, 18, 393 (2011); https://doi.org/10.1007/s10570-010-9478-7.
- K.Y. Lee, F. Quero, J.J. Blaker, C.A.S. Hill, S.J. Eichhorn and A. Bismarck, Cellulose, 18, 595 (2011); https://doi.org/10.1007/s10570-011-9525-z.
- W.J. Wang, W.W. Wang and Z.Q. Shao, Cellulose, 21, 2529 (2014); https://doi.org/10.1007/s10570-014-0295-2.
- S.S. Eyley and W. Thielemans, Nanoscale, 6, 7764 (2014); https://doi.org/10.1039/C4NR01756K.
- H. Fukuzumi, Ph.D. Thesis, Studies on Structures and Properties of TEMPO-oxidized Cellulose Nanofibril Films, Thesis, Departement of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan (2012).
- T. Saito, S. Kimura, Y. Nishiyama and A. Isogai, Biomacromolecules, 8, 2485 (2007); https://doi.org/10.1021/bm0703970.
- T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai, Biomacromolecules, 10, 1992 (2009); https://doi.org/10.1021/bm900414t.
- J. Sirvio, H. Liimatainen, J. Niinimäki and O. Hormi, Carbohydr. Polym., 86, 260 (2011); https://doi.org/10.1016/j.carbpol.2011.04.054.
- R. Dash, T. Elder and A.J. Ragauskas, Cellulose, 19, 2069 (2012); https://doi.org/10.1007/s10570-012-9769-2.
- E. Loranger, A.O. Piché and C. Daneault, Nanomaterials, 2, 286 (2012); https://doi.org/10.3390/nano2030286.
- I. Paterson, K.K.H. Ng, S. Williams, D.C. Millican and S.M. Dalby, Angew. Chem., 53, 2692 (2014); https://doi.org/10.1002/anie.201310164.
- M. Rinaudo, Polymers, 2, 505 (2010); https://doi.org/10.3390/polym2040505.
- P.A. Larsson, L.A. Berglund and L. Wagberg, Cellulose, 21, 323 (2014); https://doi.org/10.1007/s10570-013-0099-9.
- M.N. Alam, M. Antal, A. Tejado and T.G.M. van de Ven, Cellulose, 19, 517 (2012); https://doi.org/10.1007/s10570-011-9649-1.
- M. Pyda and B. Wunderlich, Macromolecules, 38, 10472 (2005); https://doi.org/10.1021/ma051611k.
- K. Oksman, M. Skrifvars and J.F. Selin, Compos. Sci. Technol., 63, 1317 (2003); https://doi.org/10.1016/S0266-3538(03)00103-9.
- K. Okubo, T. Fujii and N. Yamashita, JSME Int. J. Ser. A., 48, 199 (2005); https://doi.org/10.1299/jsmea.48.199.
- Q.G. Fan, D.M. Lewis and K.N. Tapley, J. Appl. Polym. Sci., 82, 1195 (2001); https://doi.org/10.1002/app.1953.
- S. Vicini, E. Princi, G. Luciano, E. Franceschi, E. Pedemonte, D. Oldak, H. Kaczmarek and A. Sionkowska, Thermochim. Acta, 418, 123 (2004); https://doi.org/10.1016/j.tca.2003.11.049.
- K.K.M. Ahmed, A.C. Rana and V.K. Dixit, Pharmacogn. Mag., 1, 48 (2005).
- S.C. Mojumdar, M. Sain, R.C. Prasad, L. Sun and J.E.S. Venart, J. Therm. Anal. Calorim., 90, 653 (2007); https://doi.org/10.1007/s10973-007-8518-5.
- D. Garlotta, J. Polym. Environ., 9, 63 (2001); https://doi.org/10.1023/A:1020200822435.
- K.A. Afrifah and L.M. Matuana, Macromol. Mater. Eng., 295, 802 (2010); https://doi.org/10.1002/mame.201000107.
- W.M. Groenewoud, Differential Scanning Calorimetry, In: Characteriztion of Polymeric Materials by Thermal Analysis, Elsevier Science B.V., Chap. 1, pp. 10-60 (2001).
- A. Gregorova, ed.: A.A. Elkordy, Application of Differential Scanning Calorimetry to the Characterization of Biopolymers, Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, InTech, Chap. 1 (2013).
- M.M. Rahman, S. Afrin, P. Haque, M.M. Islam, M.S. Islam and M.A. Gafur, Int. J. Chem. Eng., 2014, 1 (2014); https://doi.org/10.1155/2014/842147.
- M. Bulota, S. Tanpichai, M. Hughes and S.J. Eichhorn, ACS Appl. Mater. Interfaces, 4, 331 (2012); https://doi.org/10.1021/am201399q
References
S.H. Lee, S. Wang, G.M. Pharr and H. Xu, Composites Part A, 38, 1517 (2007); https://doi.org/10.1016/j.compositesa.2007.01.007.
A.N. Nakagaito, A. Fujimura, T. Sakai, Y. Hama and H. Yano, Compos. Sci. Technol., 69, 1293 (2009); https://doi.org/10.1016/j.compscitech.2009.03.004.
L. Suryanegara, A.N. Nakagaito and H. Yano, Compos. Sci. Technol., 69, 1187 (2009); https://doi.org/10.1016/j.compscitech.2009.02.022.
M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak and O.J. Rojas, Biomacromolecules, 11, 674 (2010); https://doi.org/10.1021/bm901254n.
A. Sdrobis, R.N. Darie, M. Totolin, G. Cazacu and C. Vasile, Composites Part B, 43, 1873 (2012); https://doi.org/10.1016/j.compositesb.2012.01.064.
R. Chollakup, W. Smitthipong, W. Kongtud and R. Tantatherdtam, J. Adhes. Sci. Technol., 27, 1290 (2013); https://doi.org/10.1080/01694243.2012.694275.
T.A. Dankovich and Y.L. Hsieh, Cellulose, 14, 469 (2007); https://doi.org/10.1007/s10570-007-9132-1.
P. Uschanov, L.S. Johansson, S.L. Maunu and J. Laine, Cellulose, 18, 393 (2011); https://doi.org/10.1007/s10570-010-9478-7.
K.Y. Lee, F. Quero, J.J. Blaker, C.A.S. Hill, S.J. Eichhorn and A. Bismarck, Cellulose, 18, 595 (2011); https://doi.org/10.1007/s10570-011-9525-z.
W.J. Wang, W.W. Wang and Z.Q. Shao, Cellulose, 21, 2529 (2014); https://doi.org/10.1007/s10570-014-0295-2.
S.S. Eyley and W. Thielemans, Nanoscale, 6, 7764 (2014); https://doi.org/10.1039/C4NR01756K.
H. Fukuzumi, Ph.D. Thesis, Studies on Structures and Properties of TEMPO-oxidized Cellulose Nanofibril Films, Thesis, Departement of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan (2012).
T. Saito, S. Kimura, Y. Nishiyama and A. Isogai, Biomacromolecules, 8, 2485 (2007); https://doi.org/10.1021/bm0703970.
T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux and A. Isogai, Biomacromolecules, 10, 1992 (2009); https://doi.org/10.1021/bm900414t.
J. Sirvio, H. Liimatainen, J. Niinimäki and O. Hormi, Carbohydr. Polym., 86, 260 (2011); https://doi.org/10.1016/j.carbpol.2011.04.054.
R. Dash, T. Elder and A.J. Ragauskas, Cellulose, 19, 2069 (2012); https://doi.org/10.1007/s10570-012-9769-2.
E. Loranger, A.O. Piché and C. Daneault, Nanomaterials, 2, 286 (2012); https://doi.org/10.3390/nano2030286.
I. Paterson, K.K.H. Ng, S. Williams, D.C. Millican and S.M. Dalby, Angew. Chem., 53, 2692 (2014); https://doi.org/10.1002/anie.201310164.
M. Rinaudo, Polymers, 2, 505 (2010); https://doi.org/10.3390/polym2040505.
P.A. Larsson, L.A. Berglund and L. Wagberg, Cellulose, 21, 323 (2014); https://doi.org/10.1007/s10570-013-0099-9.
M.N. Alam, M. Antal, A. Tejado and T.G.M. van de Ven, Cellulose, 19, 517 (2012); https://doi.org/10.1007/s10570-011-9649-1.
M. Pyda and B. Wunderlich, Macromolecules, 38, 10472 (2005); https://doi.org/10.1021/ma051611k.
K. Oksman, M. Skrifvars and J.F. Selin, Compos. Sci. Technol., 63, 1317 (2003); https://doi.org/10.1016/S0266-3538(03)00103-9.
K. Okubo, T. Fujii and N. Yamashita, JSME Int. J. Ser. A., 48, 199 (2005); https://doi.org/10.1299/jsmea.48.199.
Q.G. Fan, D.M. Lewis and K.N. Tapley, J. Appl. Polym. Sci., 82, 1195 (2001); https://doi.org/10.1002/app.1953.
S. Vicini, E. Princi, G. Luciano, E. Franceschi, E. Pedemonte, D. Oldak, H. Kaczmarek and A. Sionkowska, Thermochim. Acta, 418, 123 (2004); https://doi.org/10.1016/j.tca.2003.11.049.
K.K.M. Ahmed, A.C. Rana and V.K. Dixit, Pharmacogn. Mag., 1, 48 (2005).
S.C. Mojumdar, M. Sain, R.C. Prasad, L. Sun and J.E.S. Venart, J. Therm. Anal. Calorim., 90, 653 (2007); https://doi.org/10.1007/s10973-007-8518-5.
D. Garlotta, J. Polym. Environ., 9, 63 (2001); https://doi.org/10.1023/A:1020200822435.
K.A. Afrifah and L.M. Matuana, Macromol. Mater. Eng., 295, 802 (2010); https://doi.org/10.1002/mame.201000107.
W.M. Groenewoud, Differential Scanning Calorimetry, In: Characteriztion of Polymeric Materials by Thermal Analysis, Elsevier Science B.V., Chap. 1, pp. 10-60 (2001).
A. Gregorova, ed.: A.A. Elkordy, Application of Differential Scanning Calorimetry to the Characterization of Biopolymers, Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry, InTech, Chap. 1 (2013).
M.M. Rahman, S. Afrin, P. Haque, M.M. Islam, M.S. Islam and M.A. Gafur, Int. J. Chem. Eng., 2014, 1 (2014); https://doi.org/10.1155/2014/842147.
M. Bulota, S. Tanpichai, M. Hughes and S.J. Eichhorn, ACS Appl. Mater. Interfaces, 4, 331 (2012); https://doi.org/10.1021/am201399q