Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
pH Dependence on the Synthesis of Gold Nanoparticles Capped Na-Citrate from Adsorbed Au(III) and Au(0) on Salicylic Acid Immobilized Mg/Al Hydrotalcite
Corresponding Author(s) : S.J. Santosa
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
The investigation of pH dependence on the synthesis of gold nanoparticles capped Na-citrate from adsorbed Au(III) and Au(0) on salicylic acid immobilized hydotalcite had been carried out under ultrasound irradiation. Evidenced by UV-visible spectrophotometer, pH 3.0 revealed to be the optimum condition where gold nanoparticles show the evidence of surface plasmon resonance (SPR) at 547 nm. The deprotonation of 1- and 2-carboxylic groups of capping agent citrate was lead to the forming of [C6H6O7]2– which acts as both reduction and desorption agents of Au(III) and Au(0), respectively. Characterization using X-ray diffraction and transmission electron microscopy supported the successful synthesis of gold nanoparticles by the appearance of gold lattice index (111; 200; 220 and 311) and 2D nanoparticles image with the average size of 84.72 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Zheng, S. Bott and Q. Huo, ACS Appl. Mater. Interfaces, 8, 21585 (2016); https://doi.org/10.1021/acsami.6b06903.
- P. Priecel, H.A. Salami, R.H. Padilla, Z. Zhong and J.A. Lopez-Sanchez, Chinese J. Catal., 37, 1619 (2016); https://doi.org/10.1016/S1872-2067(16)62475-0.
- H. Daraee, A. Eatemadi, E. Abbasi, S.F. Aval, M. Kouhi and A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol., 44, 410 (2014); https://doi.org/10.3109/21691401.2014.955107.
- J.F. Hainfeld, M.J. O’Connor, F.A. Dilmanian, D.N. Slatkin, D.J. Adams and H.M. Smilowitz, Br. J. Radiol., 84, 526 (2011); https://doi.org/10.1259/bjr/42612922.
- S. Jain, D.G. Hirst and J.M. O’Sullivan, Br. J. Radiol., 85, 101 (2012); https://doi.org/10.1259/bjr/59448833.
- A.J. Mieszawska, W.J. Mulder, Z.A. Fayad and D.P. Cormode, Mol. Pharm., 10, 831 (2013); https://doi.org/10.1021/mp3005885.
- N. Li, P. Zhao and D. Astruc, Angew. Chem. Int. Ed., 53, 1756 (2014); https://doi.org/10.1002/anie.201300441.
- T. Ogata and Y. Nakano, Water Res., 39, 4281 (2005); https://doi.org/10.1016/j.watres.2005.06.036.
- S.J. Santosa, S. Sudiono, D. Siswanta, E.S. Kunarti and S.R. Dewi, Adsorpt. Sci. Technol., 29, 733 (2011); https://doi.org/10.1260/0263-6174.29.8.733.
- M. Rahmayanti, S.J. Santosa and Sutarno, Indones. J. Chem., 16, 329 (2016).
- S. Okamoto and S. Hachisu, J. Colloid Interface Sci., 62, 172 (1977); https://doi.org/10.1016/0021-9797(77)90079-0.
- L. Scarabelli, M. Grzelczak and L.M. Liz-Marzán, Chem. Mater., 25, 4232 (2013); https://doi.org/10.1021/cm402177b.
- S.J. Santosa, E.S. Kunarti and Karmanto, Appl. Surf. Sci., 254, 7612 (2008); https://doi.org/10.1016/j.apsusc.2008.01.122.
- S.J. Santosa, S. Sudiono and Z. Shiddiq, Effective Humic Acid Removal Using Zn/Al Layered Double Hydroxide Anionic Clay. J. Ion Exchange, 18, 322 (2007); https://doi.org/10.5182/jaie.18.322.
- E. Heraldy, S.J. Santosa, Triyono and K. Wijaya, Indones. J. Chem., 15, 234 (2015).
- I.Y. Ikhsani, S.J. Santosa and B. Rusdiarso, Indones. J. Chem., 16, 36 (2016).
- L.I. Ardhayanti and S.J. Santosa, Procedia Eng., 148, 1380 (2016); https://doi.org/10.1016/j.proeng.2016.06.609.
- D. Chen, Y. Li, J. Zhang, W. Li, J. Zhou, L. Shao and G. Qian, J. Hazard. Mater., 243, 152 (2012); https://doi.org/10.1016/j.jhazmat.2012.10.014.
- P. Zhao, N. Li and D. Astruc, Coord. Chem. Rev., 257, 638 (2013); https://doi.org/10.1016/j.ccr.2012.09.002.
- S. Kumar, K.S. Gandhi and R. Kumar, Ind. Eng. Chem. Res., 46, 3128 (2007); https://doi.org/10.1021/ie060672j.
- D.M. Friedrich, Z. Wang, A.G. Joly, K.A. Peterson and P.R. Callis, J. Phys. Chem. A, 103, 9644 (1999); https://doi.org/10.1021/jp990405+.
- W. Patungwasa and J.H. Hodak, Mater. Chem. Phys., 108, 45 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.001.
- J.-H. Lee, S.U.S. Choi, S.P. Jang and S.Y. Lee, Nanoscale Res. Lett., 7, 420 (2012); https://doi.org/10.1186/1556-276X-7-420.
- A. Chauhan, B. Mittu and P. Chauhan, J. Anal. Bioanal. Technol., 6, 233 (2015); https://doi.org/10.4172/2155-9872.1000233.
- A. Dhawan and J.F. Muth, Nanotechnology, 17, 2504 (2006); https://doi.org/10.1088/0957-4484/17/10/011.
- D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 71, 80 (2008); https://doi.org/10.1016/j.saa.2007.11.012.
- P. Prema, P.A. Iniya and G. Immanuel, RSC Adv., 6, 4601 (2016); https://doi.org/10.1039/C5RA23982F.
- I. Ojea-Jimanez, F.M. Romero, N.G. Bastus and V. Puntes, J. Phys. Chem. C, 114, 1800 (2010); https://doi.org/10.1021/jp9091305.
References
T. Zheng, S. Bott and Q. Huo, ACS Appl. Mater. Interfaces, 8, 21585 (2016); https://doi.org/10.1021/acsami.6b06903.
P. Priecel, H.A. Salami, R.H. Padilla, Z. Zhong and J.A. Lopez-Sanchez, Chinese J. Catal., 37, 1619 (2016); https://doi.org/10.1016/S1872-2067(16)62475-0.
H. Daraee, A. Eatemadi, E. Abbasi, S.F. Aval, M. Kouhi and A. Akbarzadeh, Artif. Cells Nanomed. Biotechnol., 44, 410 (2014); https://doi.org/10.3109/21691401.2014.955107.
J.F. Hainfeld, M.J. O’Connor, F.A. Dilmanian, D.N. Slatkin, D.J. Adams and H.M. Smilowitz, Br. J. Radiol., 84, 526 (2011); https://doi.org/10.1259/bjr/42612922.
S. Jain, D.G. Hirst and J.M. O’Sullivan, Br. J. Radiol., 85, 101 (2012); https://doi.org/10.1259/bjr/59448833.
A.J. Mieszawska, W.J. Mulder, Z.A. Fayad and D.P. Cormode, Mol. Pharm., 10, 831 (2013); https://doi.org/10.1021/mp3005885.
N. Li, P. Zhao and D. Astruc, Angew. Chem. Int. Ed., 53, 1756 (2014); https://doi.org/10.1002/anie.201300441.
T. Ogata and Y. Nakano, Water Res., 39, 4281 (2005); https://doi.org/10.1016/j.watres.2005.06.036.
S.J. Santosa, S. Sudiono, D. Siswanta, E.S. Kunarti and S.R. Dewi, Adsorpt. Sci. Technol., 29, 733 (2011); https://doi.org/10.1260/0263-6174.29.8.733.
M. Rahmayanti, S.J. Santosa and Sutarno, Indones. J. Chem., 16, 329 (2016).
S. Okamoto and S. Hachisu, J. Colloid Interface Sci., 62, 172 (1977); https://doi.org/10.1016/0021-9797(77)90079-0.
L. Scarabelli, M. Grzelczak and L.M. Liz-Marzán, Chem. Mater., 25, 4232 (2013); https://doi.org/10.1021/cm402177b.
S.J. Santosa, E.S. Kunarti and Karmanto, Appl. Surf. Sci., 254, 7612 (2008); https://doi.org/10.1016/j.apsusc.2008.01.122.
S.J. Santosa, S. Sudiono and Z. Shiddiq, Effective Humic Acid Removal Using Zn/Al Layered Double Hydroxide Anionic Clay. J. Ion Exchange, 18, 322 (2007); https://doi.org/10.5182/jaie.18.322.
E. Heraldy, S.J. Santosa, Triyono and K. Wijaya, Indones. J. Chem., 15, 234 (2015).
I.Y. Ikhsani, S.J. Santosa and B. Rusdiarso, Indones. J. Chem., 16, 36 (2016).
L.I. Ardhayanti and S.J. Santosa, Procedia Eng., 148, 1380 (2016); https://doi.org/10.1016/j.proeng.2016.06.609.
D. Chen, Y. Li, J. Zhang, W. Li, J. Zhou, L. Shao and G. Qian, J. Hazard. Mater., 243, 152 (2012); https://doi.org/10.1016/j.jhazmat.2012.10.014.
P. Zhao, N. Li and D. Astruc, Coord. Chem. Rev., 257, 638 (2013); https://doi.org/10.1016/j.ccr.2012.09.002.
S. Kumar, K.S. Gandhi and R. Kumar, Ind. Eng. Chem. Res., 46, 3128 (2007); https://doi.org/10.1021/ie060672j.
D.M. Friedrich, Z. Wang, A.G. Joly, K.A. Peterson and P.R. Callis, J. Phys. Chem. A, 103, 9644 (1999); https://doi.org/10.1021/jp990405+.
W. Patungwasa and J.H. Hodak, Mater. Chem. Phys., 108, 45 (2008); https://doi.org/10.1016/j.matchemphys.2007.09.001.
J.-H. Lee, S.U.S. Choi, S.P. Jang and S.Y. Lee, Nanoscale Res. Lett., 7, 420 (2012); https://doi.org/10.1186/1556-276X-7-420.
A. Chauhan, B. Mittu and P. Chauhan, J. Anal. Bioanal. Technol., 6, 233 (2015); https://doi.org/10.4172/2155-9872.1000233.
A. Dhawan and J.F. Muth, Nanotechnology, 17, 2504 (2006); https://doi.org/10.1088/0957-4484/17/10/011.
D. Philip, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 71, 80 (2008); https://doi.org/10.1016/j.saa.2007.11.012.
P. Prema, P.A. Iniya and G. Immanuel, RSC Adv., 6, 4601 (2016); https://doi.org/10.1039/C5RA23982F.
I. Ojea-Jimanez, F.M. Romero, N.G. Bastus and V. Puntes, J. Phys. Chem. C, 114, 1800 (2010); https://doi.org/10.1021/jp9091305.