Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Sol-Gel Method: Pathway to Ultrapure and Homogeneous Mixed Metal Oxide Nanoparticles: A Reivew
Corresponding Author(s) : M. Sharma
Asian Journal of Chemistry,
Vol. 30 No. 7 (2018): Vol 30 Issue 7
Abstract
This article includes an overview of current research on metal oxides and mixed (heterobi-) metal oxides prepared by sol-gel method using variety of precursors which created interest among scientists and technologists due to their structure, reactivity as well as application in almost every field of science. Sol-gel method is a soft-chemistry method requires mild reaction conditions, less equipments as well as produces materials with ultra purity and therefore, widely used as compared to other methods. Authors have explained hydrolytic sol-gel method with examples in the first section and compared the method with conventional solid state method. This section is further divided into subsections explaining the process using metal salts such as chlorides, nitrates, etc. and metal-organic compounds as precursor with chelating ligands, polyols, etc. The importance of using heterometallic alkoxides as precursor rather than using two different metal precursors is also explained and finally the new advancement in sol-gel method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Patil, D.V. Shinde, D.Y. Ahn, D.V. Patil, K.K. Tehare, V.V. Jadhav, J.K. Lee, R.S. Mane, N.K. Shrestha and S.-H. Han, J. Mater. Chem. A Mater. Energy Sustain., 2, 13519 (2014); https://doi.org/10.1039/C4TA02267J.
- S.J. Smith, B. Huang, S. Liu, Q. Liu, R.E. Olsen, J. Boerio-Goates and B.F. Woodfield, Nanoscale, 7, 144 (2015); https://doi.org/10.1039/C4NR04964K.
- N.D. Kandpal, N. Sah, R. Loshali, R. Joshi and J. Prasad, J. Sci. Ind. Res., 73, 87 (2014).
- J. Balavijayalakshmi, J. Environ. Nanotechnol., 2, 53 (2013); https://doi.org/10.13074/jent.2013.06.132015.
- W.S. Peternele, V.M. Fuentes, M.L. Fascineli, J.R. de Silva, R.C. Silva, C.M. Lucci and R.B. De Azevedo, J. Nanomater., Article ID 682985 (2014); https://doi.org/10.1155/2014/682985.
- J. Li, Q. Wu and J. Wu, Handbook of Nanoparticles, Springer International Publishing, Switzerland, pp. 295-328 (2015). https://doi.org/10.1007/978-3-319-13188-7_17-1.
- Z. Liu, M. Li, F. Pu, J. Ren, X. Yang and X. Qu, J. Mater. Sci., 22, 2935 (2012); https://doi.org/10.1039/C1JM14088D.
- N. Soultanidis, W. Zhou, C.J. Kiely and M.S. Wong, Langmuir, 28, 17771 (2012); https://doi.org/10.1021/la3029462.
- Y. Tian, B. Yu, X. Li and K. Li, J. Mater. Chem., 21, 2476 (2011); https://doi.org/10.1039/c0jm02913k.
- C.J. Mao, H.C. Pan, X.C. Wu, J.J. Zhu and H.Y. Chen, J. Phys. Chem. B, 110, 14709 (2006); https://doi.org/10.1021/jp061809m.
- D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu and A.K. Tyagi, J. Phys. Chem. C, 112, 6781 (2008); https://doi.org/10.1021/jp800576y.
- A. Bumajdad and M. Madkour, Nanoscale Res. Lett., 10, 19 (2015); https://doi.org/10.1186/s11671-015-0730-9.
- A. Kumar, A. Saxena, A. De, R. Shankar and S. Mozumdar, RSC Adv., 3, 5015 (2013); https://doi.org/10.1039/c3ra23455j.
- T.J. Graham, Chem. Soc., 17, 318 (1864); https://doi.org/10.1039/JS8641700318.
- J.J. Ebelmen, Liebigs Ann. Chem., 57, 319 (1846); https://doi.org/10.1002/jlac.18460570303.
- I. Bilecka and M. Niederberger, Electrochim. Acta, 55, 7717 (2010); https://doi.org/10.1016/j.electacta.2009.12.066.
- A. Vious and P.H. Mutin, eds.: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer International Publishing, pp. 1-27 (2016). https://doi.org/10.1007/978-3-319-19454-7_28-1.
- A.E. Danks, S.R. Hall and Z. Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E.
- R. Deshmukh and M. Niederberger, “The Sol-Gel Handbook - Synthesis, Characterization, and Applications: Synthesis, Characterization and Applications”, ed. D. Levy and M. Zayat, 2015, Vol. 1: Synthesis and Processing. Wiley-VCH, Weinheim, 29.
- M. Niederberger and G. Garnweitner, Chem. Eur. J., 12, 7282 (2006); https://doi.org/10.1002/chem.200600313.
- M. Niederberger, Acc. Chem. Res., 40, 793 (2007); https://doi.org/10.1021/ar600035e.
- A. Vioux and D. Leclercq, Heterog. Chem. Rev., 3, 65 (1996); https://doi.org/10.1002/(SICI)1234-985X(199603)3:1<65::AIDHCR57>3.0.CO;2-7.
- A. Vioux, Chem. Mater., 9, 2292 (1997); https://doi.org/10.1021/cm970322a.
- P.H. Mutin and A. Vioux, Chem. Mater., 21, 582 (2009); https://doi.org/10.1021/cm802348c.
- L.L. Hench and J.K. West, Chem. Rev., 90, 33 (1990); https://doi.org/10.1021/cr00099a003.
- A.C. Pierre, Introduction to Sol–Gel Processing, Kluwer, Boston (1998).
- H. Kozuka, Sol-Gel Processing, In: Handbook of Sol-Gel Science and Technology, Kluwer Academic Publishers, vol. 1 (2005).
- C.J. Brinker and G.W. Scherrer, Sol-Gel Science: The Physics and Chemistry of Sol Gel Processing, Academic Press Limited, London (1990).
- A. Styskalik, D. Skoda, C.E. Barnes and J. Pinkas, Catalysts, 7, 168 (2017); https://doi.org/10.3390/catal7060168.
- S. Sakka, J. Sol-Gel Sci. Technol., 4, 5 (1995); https://doi.org/10.1007/BF00486696.
- P. Singh and A. Nanda, Int. J. Cosmet. Sci., 36, 273 (2014); https://doi.org/10.1111/ics.12124.
- P.-J. Lu, S.-C. Huang, Y.-P. Chen, L.-C. Chiueh and D.Y.-C. Shih, J. Food Drug Anal., 23, 587 (2015); https://doi.org/10.1016/j.jfda.2015.02.009.
- J.S. Park, H. Kim and I.D. Kim, J. Electroceram., 32, 117 (2014); https://doi.org/10.1007/s10832-013-9858-0.
- A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons Ltd., II Edition, England (2003).
- G. Buxbaum, Industrial Inorganic Pigments, Wiley-VCH, edn 3, p. 315 (1998).
- C.B. Carter and M.G. Norton, Materials, Science and Engineering, Springer, New York (2007).
- M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin and A. Vioux, J. Mater. Chem., 6, 1665 (1996); https://doi.org/10.1039/JM9960601665.
- K. Bouchmella, P. Hubert Mutin, M. Stoyanova, C. Poleunis, P. Eloy, U. Rodemerck, E.M. Gaigneaux and D.P. Debecker, J. Catal., 301, 233 (2013); https://doi.org/10.1016/j.jcat.2013.02.016.
- J.C. Védrine and I. Fechete, C.R. Chim., 19, 1203 (2016); https://doi.org/10.1016/j.crci.2015.09.021.
- H. Su, S. Jaffer and H. Yu, Energy Storage Mater., 5, 116 (2016); https://doi.org/10.1016/j.ensm.2016.06.005.
- M.V. Reddy, G.V. Subba Rao and B.V.R. Chowdari, Chem. Rev., 113, 5364 (2013); https://doi.org/10.1021/cr3001884.
- F. Jinbo and J. Li, ed.: C.S.S.R. Kumar, Nanomaterials for the Life Sciences, In: Nanostructured Oxides, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, vol. 2, p. 287 (2009).
- S. Pande, H. Swaruparani, M.D. Bedre, R. Bhat, R. Deshpande and A. Venkataraman, Nanosci. Nanotechnol.-Asia, 2, 90 (2012); https://doi.org/10.5923/j.nn.20120204.01.
- A. Khaleel, P.N. Kapoor and K.J. Klabunde, Nanostruct. Mater., 11, 459 (1999); https://doi.org/10.1016/S0965-9773(99)00329-3.
- L. Chen, H. Xin, Y. Fang, C. Zhang, F. Zhang, X. Cao, C. Zhang and X. Li, J. Nanomater., Article ID 793610 (2014) http://dx.doi.org/10.1155/2014/793610.
- D. Pathania and P. Singh, Advanced Materials for Agriculture, Food, and Environmental Safety, John Wiley & Sons Inc., pp. 243-263 (2014).
- N. Sharma and R. Kakkar, Adv. Mater. Lett., 4, 508 (2013); https://doi.org/10.5185/amlett.2012.12493.
- B. Singh, G.K. Prasad, K.S. Pandey, R.K. Danikhel and R. Vijayaraghavan, Def. Sci. J., 60, 428 (2010); https://doi.org/10.14429/dsj.60.487.
- G.W. Wagner, L.R. Procell, R.J. O’Connor, S. Munavalli, C.L. Carnes, P.N. Kapoor and K.J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001); https://doi.org/10.1021/ja003518b.
- M. Bhagat, A. Singh and R.C. Mehrotra, Main Group Met. Chem., 20, 89 (1997); https://doi.org/10.1515/MGMC.1997.20.2.89.
- M. Bhagat, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 28, 997 (1998); https://doi.org/10.1080/00945719809351684.
- M. Bhagat, A. Singh and R.C. Mehrotra, Indian J. Chem., 37A, 820 (1998).
- M. Sharma, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 30, 1331 (2000); https://doi.org/10.1080/00945710009351837.
- M. Sharma, A. Singh and R.C. Mehrotra, J. Chem. Res., 191 (2003); https://doi.org/10.3184/030823403103173697.
- M. Sharma, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 32, 1223 (2002); https://doi.org/10.1081/SIM-120014299.
- M.K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 40A, 1226 (2001).
- R.C. Mehrotra, A. Singh and S. Sogani, Chem. Rev., 94, 1643 (1994); https://doi.org/10.1021/cr00030a008.
- H.K. Sharma and P.N. Kapoor, Indian J. Chem., 43A, 566 (2004).
- H.K. Sharma and P.N. Kapoor, Polyhedron, 7, 1389 (1988); https://doi.org/10.1016/S0277-5387(00)80390-3.
- R.C. Mehrotra, A. Singh and S. Sogani, Chem. Soc. Rev., 23, 215 (1994); https://doi.org/10.1039/cs9942300215.
- R.C. Mehrotra and A. Singh, Prog. Inorg. Chem., 46, 239 (1997);
- R.C. Mehrotra, A. Singh, M. Bhagat and J. Godhwani, J. Sol-Gel Sci. Technol., 13, 45 (1998); https://doi.org/10.1023/A:1008690903037.
- D.C. Bradley, R.C. Mehrotra, I.P. Rothwell and A. Singh, Alkoxo and Aryloxo Derivatives of Metals, Academic Press, London (2001).
- K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Main Group Met. Chem., 26, 131 (2003); https://doi.org/10.1515/MGMC.2003.26.2.131.
- K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 42A, 493 (2003).
- M. Sharma, A. Singh and R.C. Mehrotra, Polyhedron, 19, 77 (2000); https://doi.org/10.1016/S0277-5387(99)00327-7.
- A. Singh and R.C. Mehrotra, Coord. Chem. Rev., 248, 101 (2004); https://doi.org/10.1016/j.cct.2003.09.004.
- R.C. Mehrotra, A. Singh and U.M. Tripathi, Chem. Rev., 91, 1287 (1991); https://doi.org/10.1021/cr00006a007.
- A.T. Bolsoni, J.S. Dos Santos, M.D. Assis and H.P. Oliveira, J. Non-Cryst. Solids, 357, 3301 (2011); https://doi.org/10.1016/j.jnoncrysol.2011.05.022.
- R. Gvishi, eds.: D. Levy and M. Zayat, The Sol-Gel Handbook: Synthesis, Characterization and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, vol. 2, Chap. 10, pp. 317-344 (2015). https://doi.org/10.1002/9783527670819.
- R.C. Mehrotra and A. Singh, Chem. Soc. Rev., 25, 1 (1996); https://doi.org/10.1039/cs9962500001.
- R.C. Mehrotra, Proc. Indian Natl. Sci. Acad. Part A, 61, 253 (1995).
- P.N. Kapoor, D. Heroux, R.S. Mulukutla, V. Zaikovskii and K.J. Klabunde, J. Mater. Chem., 13, 410 (2003); https://doi.org/10.1039/b205743n.
- P.N. Kapoor, S. Uma, S. Rodriguez and K.J. Klabunde, J. Mol. Catal. A, 229, 145 (2005); https://doi.org/10.1016/j.molcata.2004.11.008.
- S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hüfner, R. Haberkorn, H.P. Beck and M. Jilavi, J. Am. Ceram. Soc., 84, 1921 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00938.x.
- I.H. Mutlu, H. Acun, E. Celik and H. Turkmen, Physica C, 451, 98 (2007); https://doi.org/10.1016/j.physc.2006.10.010.
- M. Toyoda and D.A. Payne, Mater. Lett., 18, 84 (1993); https://doi.org/10.1016/0167-577X(93)90062-3.
- A. Suárez-Gómez, M. Sanchez-Tizapa, R. Castañeda-Valderrama and M.A. Carreón-Álvarez, Bull. Mater. Sci., 37, 1123 (2014); https://doi.org/10.1007/s12034-014-0052-z.
- A. Kareiva, M. Karppinen and L. Niinistö, J. Mater. Chem., 4, 1267 (1994); https://doi.org/10.1039/JM9940401267.
- S.H. Park and Y.K. Sun, J. Power Sources, 119, 161 (2003); https://doi.org/10.1016/S0378-7753(03)00171-X.
- R. Thirunakaran, K.T. Kim, Y.M. Kang and J. Young Lee, Mater. Res. Bull., 40, 177 (2005); https://doi.org/10.1016/j.materresbull.2004.08.013.
- K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed and A.M. Shemsi, Appl. Catal. A Gen., 393, 122 (2011); https://doi.org/10.1016/j.apcata.2010.11.032.
- D. Visinescu, C. Paraschiv, A. Ianculescu, B. Jurca, B. Vasile and O. Carp, Dyes Pigments, 87, 125 (2010); https://doi.org/10.1016/j.dyepig.2010.03.006.
- S.R. Hall, Adv. Mater., 18, 487 (2006); https://doi.org/10.1002/adma.200501971.
- D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka and S. Mann, Nat. Mater., 2, 386 (2003); https://doi.org/10.1038/nmat903.
- J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988); https://doi.org/10.1016/0079-6786(88)90005-2.
- Z. Yue, J. Zhou, L. Li, H. Zhang and Z. Gui, J. Magn. Magn. Mater., 208, 55 (2000); https://doi.org/10.1016/S0304-8853(99)00566-1.
- S. Thiagarajan, A. Sanmugam and D. Vikraman, ed.: U. Chandra, Recent Application in Sol Gel Synthesis, InTech, Chap. 1, pp. 308 (2017).
- K.F. Hsu, S.Y. Tsay and B.J. Hwang, J. Mater. Chem., 14, 2690 (2004); https://doi.org/10.1039/B406774F.
- S. Kandhasamy, A. Pandey and M. Minakshi, Electrochim. Acta, 60, 170 (2012); https://doi.org/10.1016/j.electacta.2011.11.028.
- J. Wan, W. Cai, X. Meng and E. Liu, Chem. Commun., 5004 (2007); https://doi.org/10.1039/b712795b.
- S.R. Lukic, D.M. Petrovic, M.D. Dramic’anin, M. Mitric and L. Ðaèanin, Sci. Mater., 58, 655 (2008); https://doi.org/10.1016/j.scriptamat.2007.11.045.
- M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent 3330697A (1967).
- L. Dimesso, eds.: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer, pp. 1-22 (2016).
- T.O.L. Sunde, M.-A. Einarsrud and T. Grande, J. Eur. Ceram. Soc., 33, 565 (2013); https://doi.org/10.1016/j.jeurceramsoc.2012.09.023.
- T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x.
- I.A. Farbun, I.V. Romanova and S.A. Kirillov, J. Sol-Gel Sci. Technol., 68, 411 (2013); https://doi.org/10.1007/s10971-013-3024-7.
- S.G. Rudisill, N.M. Hein, D. Terzic and A. Stein, Chem. Mater., 25, 745 (2013); https://doi.org/10.1021/cm303761z.
- S.M. Abreu Jr., S.M. Zanetti, M.A.S. Oliveira and G.P. Thim, J. Eur. Ceram. Soc., 25, 743 (2005); https://doi.org/10.1016/j.jeurceramsoc.2004.02.021.
- Y.K. Sun and I.H. Oh, Ind. Eng. Chem. Res., 35, 4296 (1996); https://doi.org/10.1021/ie950527y.
- M. Motta, C. Deimling, M. Saeki and P. Lisboa-Filho, J. Sol-Gel Sci. Technol., 46, 201 (2008); https://doi.org/10.1007/s10971-007-1673-0.
- S. Komarneni and R. Roy, Mater. Lett., 3, 165 (1985); https://doi.org/10.1016/0167-577X(85)90151-X.
- S. Komarneni, Chem. World, 6, 38 (2009).
- G.M. Neves, R.F.S. Lenza and W.L. Vasconcelos, Mater. Res., 5, 447 (2002); https://doi.org/10.1590/S1516-14392002000400009.
- D. He, H. Hao, D. Chen, J. Lu, L. Zhong, R. Chen, F. Liu, G. Wan, S. He and Y. Luo, J. Environ. Chem. Eng., 4, 311 (2016); https://doi.org/10.1016/j.jece.2015.11.019.
- H. Yang, X. Zhang, Q. Tao and A. Tanga, J. Optoelectron. Adv. Mater., 9, 2493 (2007).
- H. Mirzaei and A. Davoodnia, Chin. J. Catal., 33, 1502 (2012); https://doi.org/10.1016/S1872-2067(11)60431-2.
- R. Deshmukh and M. Niederberger, Chem. Eur. J., 23, 8542 (2017); https://doi.org/10.1002/chem.201605957.
- M. Karmaoui, S.G. Leonardi, D.M. Tobaldi, N. Donato, R.C. Pullar, M.P. Seabra, J.A. Labrincha and G. Neri, J. Mater. Chem. B Mater. Biol. Med., 3, 399 (2015); https://doi.org/10.1039/C4TB01177E.
- R. Deshmukh, G. Zeng, E. Tervoort, M. Staniuk, M. Niederberger and D. Wood, Chem. Mater., 27, 8282 (2015); https://doi.org/10.1021/acs.chemmater.5b03444.
- D. Skoda, A. Styskalik, Z. Moravec, P. Bezdicka, J. Bursik, P.H. Mutin and J. Pinkas, RSC Adv., 6, 68739 (2016); https://doi.org/10.1039/C6RA16556G.
- P. Jittiarporn, S. Badilescu, M.N. Al Sawafta, L. Sikong and V.-V. Truong, J. Sci.: Adv. Mater. Devices, 2, 286 (2017); https://doi.org/10.1016/j.jsamd.2017.08.005.
References
S.A. Patil, D.V. Shinde, D.Y. Ahn, D.V. Patil, K.K. Tehare, V.V. Jadhav, J.K. Lee, R.S. Mane, N.K. Shrestha and S.-H. Han, J. Mater. Chem. A Mater. Energy Sustain., 2, 13519 (2014); https://doi.org/10.1039/C4TA02267J.
S.J. Smith, B. Huang, S. Liu, Q. Liu, R.E. Olsen, J. Boerio-Goates and B.F. Woodfield, Nanoscale, 7, 144 (2015); https://doi.org/10.1039/C4NR04964K.
N.D. Kandpal, N. Sah, R. Loshali, R. Joshi and J. Prasad, J. Sci. Ind. Res., 73, 87 (2014).
J. Balavijayalakshmi, J. Environ. Nanotechnol., 2, 53 (2013); https://doi.org/10.13074/jent.2013.06.132015.
W.S. Peternele, V.M. Fuentes, M.L. Fascineli, J.R. de Silva, R.C. Silva, C.M. Lucci and R.B. De Azevedo, J. Nanomater., Article ID 682985 (2014); https://doi.org/10.1155/2014/682985.
J. Li, Q. Wu and J. Wu, Handbook of Nanoparticles, Springer International Publishing, Switzerland, pp. 295-328 (2015). https://doi.org/10.1007/978-3-319-13188-7_17-1.
Z. Liu, M. Li, F. Pu, J. Ren, X. Yang and X. Qu, J. Mater. Sci., 22, 2935 (2012); https://doi.org/10.1039/C1JM14088D.
N. Soultanidis, W. Zhou, C.J. Kiely and M.S. Wong, Langmuir, 28, 17771 (2012); https://doi.org/10.1021/la3029462.
Y. Tian, B. Yu, X. Li and K. Li, J. Mater. Chem., 21, 2476 (2011); https://doi.org/10.1039/c0jm02913k.
C.J. Mao, H.C. Pan, X.C. Wu, J.J. Zhu and H.Y. Chen, J. Phys. Chem. B, 110, 14709 (2006); https://doi.org/10.1021/jp061809m.
D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu and A.K. Tyagi, J. Phys. Chem. C, 112, 6781 (2008); https://doi.org/10.1021/jp800576y.
A. Bumajdad and M. Madkour, Nanoscale Res. Lett., 10, 19 (2015); https://doi.org/10.1186/s11671-015-0730-9.
A. Kumar, A. Saxena, A. De, R. Shankar and S. Mozumdar, RSC Adv., 3, 5015 (2013); https://doi.org/10.1039/c3ra23455j.
T.J. Graham, Chem. Soc., 17, 318 (1864); https://doi.org/10.1039/JS8641700318.
J.J. Ebelmen, Liebigs Ann. Chem., 57, 319 (1846); https://doi.org/10.1002/jlac.18460570303.
I. Bilecka and M. Niederberger, Electrochim. Acta, 55, 7717 (2010); https://doi.org/10.1016/j.electacta.2009.12.066.
A. Vious and P.H. Mutin, eds.: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer International Publishing, pp. 1-27 (2016). https://doi.org/10.1007/978-3-319-19454-7_28-1.
A.E. Danks, S.R. Hall and Z. Schnepp, Mater. Horiz., 3, 91 (2016); https://doi.org/10.1039/C5MH00260E.
R. Deshmukh and M. Niederberger, “The Sol-Gel Handbook - Synthesis, Characterization, and Applications: Synthesis, Characterization and Applications”, ed. D. Levy and M. Zayat, 2015, Vol. 1: Synthesis and Processing. Wiley-VCH, Weinheim, 29.
M. Niederberger and G. Garnweitner, Chem. Eur. J., 12, 7282 (2006); https://doi.org/10.1002/chem.200600313.
M. Niederberger, Acc. Chem. Res., 40, 793 (2007); https://doi.org/10.1021/ar600035e.
A. Vioux and D. Leclercq, Heterog. Chem. Rev., 3, 65 (1996); https://doi.org/10.1002/(SICI)1234-985X(199603)3:1<65::AIDHCR57>3.0.CO;2-7.
A. Vioux, Chem. Mater., 9, 2292 (1997); https://doi.org/10.1021/cm970322a.
P.H. Mutin and A. Vioux, Chem. Mater., 21, 582 (2009); https://doi.org/10.1021/cm802348c.
L.L. Hench and J.K. West, Chem. Rev., 90, 33 (1990); https://doi.org/10.1021/cr00099a003.
A.C. Pierre, Introduction to Sol–Gel Processing, Kluwer, Boston (1998).
H. Kozuka, Sol-Gel Processing, In: Handbook of Sol-Gel Science and Technology, Kluwer Academic Publishers, vol. 1 (2005).
C.J. Brinker and G.W. Scherrer, Sol-Gel Science: The Physics and Chemistry of Sol Gel Processing, Academic Press Limited, London (1990).
A. Styskalik, D. Skoda, C.E. Barnes and J. Pinkas, Catalysts, 7, 168 (2017); https://doi.org/10.3390/catal7060168.
S. Sakka, J. Sol-Gel Sci. Technol., 4, 5 (1995); https://doi.org/10.1007/BF00486696.
P. Singh and A. Nanda, Int. J. Cosmet. Sci., 36, 273 (2014); https://doi.org/10.1111/ics.12124.
P.-J. Lu, S.-C. Huang, Y.-P. Chen, L.-C. Chiueh and D.Y.-C. Shih, J. Food Drug Anal., 23, 587 (2015); https://doi.org/10.1016/j.jfda.2015.02.009.
J.S. Park, H. Kim and I.D. Kim, J. Electroceram., 32, 117 (2014); https://doi.org/10.1007/s10832-013-9858-0.
A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons Ltd., II Edition, England (2003).
G. Buxbaum, Industrial Inorganic Pigments, Wiley-VCH, edn 3, p. 315 (1998).
C.B. Carter and M.G. Norton, Materials, Science and Engineering, Springer, New York (2007).
M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H. Mutin and A. Vioux, J. Mater. Chem., 6, 1665 (1996); https://doi.org/10.1039/JM9960601665.
K. Bouchmella, P. Hubert Mutin, M. Stoyanova, C. Poleunis, P. Eloy, U. Rodemerck, E.M. Gaigneaux and D.P. Debecker, J. Catal., 301, 233 (2013); https://doi.org/10.1016/j.jcat.2013.02.016.
J.C. Védrine and I. Fechete, C.R. Chim., 19, 1203 (2016); https://doi.org/10.1016/j.crci.2015.09.021.
H. Su, S. Jaffer and H. Yu, Energy Storage Mater., 5, 116 (2016); https://doi.org/10.1016/j.ensm.2016.06.005.
M.V. Reddy, G.V. Subba Rao and B.V.R. Chowdari, Chem. Rev., 113, 5364 (2013); https://doi.org/10.1021/cr3001884.
F. Jinbo and J. Li, ed.: C.S.S.R. Kumar, Nanomaterials for the Life Sciences, In: Nanostructured Oxides, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, vol. 2, p. 287 (2009).
S. Pande, H. Swaruparani, M.D. Bedre, R. Bhat, R. Deshpande and A. Venkataraman, Nanosci. Nanotechnol.-Asia, 2, 90 (2012); https://doi.org/10.5923/j.nn.20120204.01.
A. Khaleel, P.N. Kapoor and K.J. Klabunde, Nanostruct. Mater., 11, 459 (1999); https://doi.org/10.1016/S0965-9773(99)00329-3.
L. Chen, H. Xin, Y. Fang, C. Zhang, F. Zhang, X. Cao, C. Zhang and X. Li, J. Nanomater., Article ID 793610 (2014) http://dx.doi.org/10.1155/2014/793610.
D. Pathania and P. Singh, Advanced Materials for Agriculture, Food, and Environmental Safety, John Wiley & Sons Inc., pp. 243-263 (2014).
N. Sharma and R. Kakkar, Adv. Mater. Lett., 4, 508 (2013); https://doi.org/10.5185/amlett.2012.12493.
B. Singh, G.K. Prasad, K.S. Pandey, R.K. Danikhel and R. Vijayaraghavan, Def. Sci. J., 60, 428 (2010); https://doi.org/10.14429/dsj.60.487.
G.W. Wagner, L.R. Procell, R.J. O’Connor, S. Munavalli, C.L. Carnes, P.N. Kapoor and K.J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001); https://doi.org/10.1021/ja003518b.
M. Bhagat, A. Singh and R.C. Mehrotra, Main Group Met. Chem., 20, 89 (1997); https://doi.org/10.1515/MGMC.1997.20.2.89.
M. Bhagat, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 28, 997 (1998); https://doi.org/10.1080/00945719809351684.
M. Bhagat, A. Singh and R.C. Mehrotra, Indian J. Chem., 37A, 820 (1998).
M. Sharma, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 30, 1331 (2000); https://doi.org/10.1080/00945710009351837.
M. Sharma, A. Singh and R.C. Mehrotra, J. Chem. Res., 191 (2003); https://doi.org/10.3184/030823403103173697.
M. Sharma, A. Singh and R.C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 32, 1223 (2002); https://doi.org/10.1081/SIM-120014299.
M.K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 40A, 1226 (2001).
R.C. Mehrotra, A. Singh and S. Sogani, Chem. Rev., 94, 1643 (1994); https://doi.org/10.1021/cr00030a008.
H.K. Sharma and P.N. Kapoor, Indian J. Chem., 43A, 566 (2004).
H.K. Sharma and P.N. Kapoor, Polyhedron, 7, 1389 (1988); https://doi.org/10.1016/S0277-5387(00)80390-3.
R.C. Mehrotra, A. Singh and S. Sogani, Chem. Soc. Rev., 23, 215 (1994); https://doi.org/10.1039/cs9942300215.
R.C. Mehrotra and A. Singh, Prog. Inorg. Chem., 46, 239 (1997);
R.C. Mehrotra, A. Singh, M. Bhagat and J. Godhwani, J. Sol-Gel Sci. Technol., 13, 45 (1998); https://doi.org/10.1023/A:1008690903037.
D.C. Bradley, R.C. Mehrotra, I.P. Rothwell and A. Singh, Alkoxo and Aryloxo Derivatives of Metals, Academic Press, London (2001).
K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Main Group Met. Chem., 26, 131 (2003); https://doi.org/10.1515/MGMC.2003.26.2.131.
K. Sharma, M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 42A, 493 (2003).
M. Sharma, A. Singh and R.C. Mehrotra, Polyhedron, 19, 77 (2000); https://doi.org/10.1016/S0277-5387(99)00327-7.
A. Singh and R.C. Mehrotra, Coord. Chem. Rev., 248, 101 (2004); https://doi.org/10.1016/j.cct.2003.09.004.
R.C. Mehrotra, A. Singh and U.M. Tripathi, Chem. Rev., 91, 1287 (1991); https://doi.org/10.1021/cr00006a007.
A.T. Bolsoni, J.S. Dos Santos, M.D. Assis and H.P. Oliveira, J. Non-Cryst. Solids, 357, 3301 (2011); https://doi.org/10.1016/j.jnoncrysol.2011.05.022.
R. Gvishi, eds.: D. Levy and M. Zayat, The Sol-Gel Handbook: Synthesis, Characterization and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, vol. 2, Chap. 10, pp. 317-344 (2015). https://doi.org/10.1002/9783527670819.
R.C. Mehrotra and A. Singh, Chem. Soc. Rev., 25, 1 (1996); https://doi.org/10.1039/cs9962500001.
R.C. Mehrotra, Proc. Indian Natl. Sci. Acad. Part A, 61, 253 (1995).
P.N. Kapoor, D. Heroux, R.S. Mulukutla, V. Zaikovskii and K.J. Klabunde, J. Mater. Chem., 13, 410 (2003); https://doi.org/10.1039/b205743n.
P.N. Kapoor, S. Uma, S. Rodriguez and K.J. Klabunde, J. Mol. Catal. A, 229, 145 (2005); https://doi.org/10.1016/j.molcata.2004.11.008.
S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hüfner, R. Haberkorn, H.P. Beck and M. Jilavi, J. Am. Ceram. Soc., 84, 1921 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00938.x.
I.H. Mutlu, H. Acun, E. Celik and H. Turkmen, Physica C, 451, 98 (2007); https://doi.org/10.1016/j.physc.2006.10.010.
M. Toyoda and D.A. Payne, Mater. Lett., 18, 84 (1993); https://doi.org/10.1016/0167-577X(93)90062-3.
A. Suárez-Gómez, M. Sanchez-Tizapa, R. Castañeda-Valderrama and M.A. Carreón-Álvarez, Bull. Mater. Sci., 37, 1123 (2014); https://doi.org/10.1007/s12034-014-0052-z.
A. Kareiva, M. Karppinen and L. Niinistö, J. Mater. Chem., 4, 1267 (1994); https://doi.org/10.1039/JM9940401267.
S.H. Park and Y.K. Sun, J. Power Sources, 119, 161 (2003); https://doi.org/10.1016/S0378-7753(03)00171-X.
R. Thirunakaran, K.T. Kim, Y.M. Kang and J. Young Lee, Mater. Res. Bull., 40, 177 (2005); https://doi.org/10.1016/j.materresbull.2004.08.013.
K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed and A.M. Shemsi, Appl. Catal. A Gen., 393, 122 (2011); https://doi.org/10.1016/j.apcata.2010.11.032.
D. Visinescu, C. Paraschiv, A. Ianculescu, B. Jurca, B. Vasile and O. Carp, Dyes Pigments, 87, 125 (2010); https://doi.org/10.1016/j.dyepig.2010.03.006.
S.R. Hall, Adv. Mater., 18, 487 (2006); https://doi.org/10.1002/adma.200501971.
D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka and S. Mann, Nat. Mater., 2, 386 (2003); https://doi.org/10.1038/nmat903.
J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988); https://doi.org/10.1016/0079-6786(88)90005-2.
Z. Yue, J. Zhou, L. Li, H. Zhang and Z. Gui, J. Magn. Magn. Mater., 208, 55 (2000); https://doi.org/10.1016/S0304-8853(99)00566-1.
S. Thiagarajan, A. Sanmugam and D. Vikraman, ed.: U. Chandra, Recent Application in Sol Gel Synthesis, InTech, Chap. 1, pp. 308 (2017).
K.F. Hsu, S.Y. Tsay and B.J. Hwang, J. Mater. Chem., 14, 2690 (2004); https://doi.org/10.1039/B406774F.
S. Kandhasamy, A. Pandey and M. Minakshi, Electrochim. Acta, 60, 170 (2012); https://doi.org/10.1016/j.electacta.2011.11.028.
J. Wan, W. Cai, X. Meng and E. Liu, Chem. Commun., 5004 (2007); https://doi.org/10.1039/b712795b.
S.R. Lukic, D.M. Petrovic, M.D. Dramic’anin, M. Mitric and L. Ðaèanin, Sci. Mater., 58, 655 (2008); https://doi.org/10.1016/j.scriptamat.2007.11.045.
M.P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, US Patent 3330697A (1967).
L. Dimesso, eds.: L. Klein, M. Aparicio and A. Jitianu, Handbook of Sol-Gel Science and Technology, Springer, pp. 1-22 (2016).
T.O.L. Sunde, M.-A. Einarsrud and T. Grande, J. Eur. Ceram. Soc., 33, 565 (2013); https://doi.org/10.1016/j.jeurceramsoc.2012.09.023.
T. Liu, Y. Xu and J. Zhao, J. Am. Ceram. Soc., 93, 3637 (2010); https://doi.org/10.1111/j.1551-2916.2010.03945.x.
I.A. Farbun, I.V. Romanova and S.A. Kirillov, J. Sol-Gel Sci. Technol., 68, 411 (2013); https://doi.org/10.1007/s10971-013-3024-7.
S.G. Rudisill, N.M. Hein, D. Terzic and A. Stein, Chem. Mater., 25, 745 (2013); https://doi.org/10.1021/cm303761z.
S.M. Abreu Jr., S.M. Zanetti, M.A.S. Oliveira and G.P. Thim, J. Eur. Ceram. Soc., 25, 743 (2005); https://doi.org/10.1016/j.jeurceramsoc.2004.02.021.
Y.K. Sun and I.H. Oh, Ind. Eng. Chem. Res., 35, 4296 (1996); https://doi.org/10.1021/ie950527y.
M. Motta, C. Deimling, M. Saeki and P. Lisboa-Filho, J. Sol-Gel Sci. Technol., 46, 201 (2008); https://doi.org/10.1007/s10971-007-1673-0.
S. Komarneni and R. Roy, Mater. Lett., 3, 165 (1985); https://doi.org/10.1016/0167-577X(85)90151-X.
S. Komarneni, Chem. World, 6, 38 (2009).
G.M. Neves, R.F.S. Lenza and W.L. Vasconcelos, Mater. Res., 5, 447 (2002); https://doi.org/10.1590/S1516-14392002000400009.
D. He, H. Hao, D. Chen, J. Lu, L. Zhong, R. Chen, F. Liu, G. Wan, S. He and Y. Luo, J. Environ. Chem. Eng., 4, 311 (2016); https://doi.org/10.1016/j.jece.2015.11.019.
H. Yang, X. Zhang, Q. Tao and A. Tanga, J. Optoelectron. Adv. Mater., 9, 2493 (2007).
H. Mirzaei and A. Davoodnia, Chin. J. Catal., 33, 1502 (2012); https://doi.org/10.1016/S1872-2067(11)60431-2.
R. Deshmukh and M. Niederberger, Chem. Eur. J., 23, 8542 (2017); https://doi.org/10.1002/chem.201605957.
M. Karmaoui, S.G. Leonardi, D.M. Tobaldi, N. Donato, R.C. Pullar, M.P. Seabra, J.A. Labrincha and G. Neri, J. Mater. Chem. B Mater. Biol. Med., 3, 399 (2015); https://doi.org/10.1039/C4TB01177E.
R. Deshmukh, G. Zeng, E. Tervoort, M. Staniuk, M. Niederberger and D. Wood, Chem. Mater., 27, 8282 (2015); https://doi.org/10.1021/acs.chemmater.5b03444.
D. Skoda, A. Styskalik, Z. Moravec, P. Bezdicka, J. Bursik, P.H. Mutin and J. Pinkas, RSC Adv., 6, 68739 (2016); https://doi.org/10.1039/C6RA16556G.
P. Jittiarporn, S. Badilescu, M.N. Al Sawafta, L. Sikong and V.-V. Truong, J. Sci.: Adv. Mater. Devices, 2, 286 (2017); https://doi.org/10.1016/j.jsamd.2017.08.005.