Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalytic Activity of 0.4 % Rhodium Supported Microporous AlPO4-5 Catalyst for NO-CO-C3H6-O2 Reactions
Corresponding Author(s) : Ahmed Jalal Samed
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Temperature-programmed reactions of mixtures of NO, CO, C3H6 and O2 were investigated over rhodium supported on microporous AlPO4-5 catalyst. Same reactions were studied after treating the catalyst in a stream of H2 to evaluate the catalytic performance after reduction treatment. Microporous AlPO4-5 was synthesized hydrothermally using triethylamine as structure directing agent and then been used as a support for rhodium metal. A lower amount of rhodium (0.4 wt %) supported on microporous AlPO4-5 catalyst exhibited satisfactory light-off at temperature (T50 % = 300 ºC) with a steep rise in conversion efficiency after aging the catalyst at 900 ºC for 25 h in a stream of 10 % H2O/air. Outstanding result was observed after reduction treatment of the catalyst, where light-off shifted to a lower temperature 200 ºC maintaining steep rise in conversion efficiency. Rhodium nanoparticles were well dispersed on the high surface area microporous AlPO4-5 material, which is believed to be the key factor for exhibiting excellent catalytic activity both in the oxidizing as well as reducing environment. This newly developed rhodium supported microporous AlPO4-5 catalyst with minimum rhodium loading having excellent catalytic performance after reduction treatment, has the potential to serve as a new generation there-way catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Huang, H.P. Wang, C.T. Yeh, S.H. Liu and B.C. Chang, Environ. Technol., 24, 377 (2003); https://doi.org/10.1080/09593330309385570.
- J. Cooper and P. Phillips, Platin. Met. Rev., 57, 157 (2013); https://doi.org/10.1595/147106713X663924.
- M. Shelef, Catal. Rev., Sci. Eng., 11, 1 (1975); https://doi.org/10.1080/01614947508079980.
- K.C. Taylor, Catal. Rev., Sci. Eng., 35, 457 (1993); https://doi.org/10.1080/01614949308013915.
- G. Goula, P. Katzourakis, N. Vakakis, T. Papadam, M. Konsolakis, M. Tikhov and I.V. Yentekakis, Catal. Today, 127, 199 (2007); https://doi.org/10.1016/j.cattod.2007.03.008.
- R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B, 39, 283 (2002); https://doi.org/10.1016/S0926-3373(02)00118-2.
- R.J. Wu and C.T. Yeh, Int. J. Chem. Kinet., 28, 89 (1996); https://doi.org/10.1002/(SICI)1097-4601(1996)28:2<89::AID-KIN3>3.0.CO;2-H.
- M.V. Twigg, Appl. Catal. B, 70, 2 (2007); https://doi.org/10.1016/j.apcatb.2006.02.029.
- B. Harrison, B.J. Cooper and A.J.J. Wilkins, Platin. Met. Rev., 25, 14 (1981).
- A. König, G. Herding, B. Hupfeld, T. Richter and K. Weidmann, Top. Catal., 16/17, 23 (2001); https://doi.org/10.1023/A:1016666327542.
- S. Matsumoto, K. Yokota, H. Doi, M. Kimura, K. Sekizawa and S. Kasahara, Catal. Today, 22, 127 (1994); https://doi.org/10.1016/0920-5861(94)80097-9.
- H.S. Gandhi, G.W. Graham and R.W. McCabe, J. Catal., 216, 433 (2003); https://doi.org/10.1016/S0021-9517(02)00067-2.
- A.J. Samed, K. Uemura, K. Ikeue and M. Machida, Int. J. Environ. Stud., 70, 549 (2013); https://doi.org/10.1080/00207233.2013.816198.
- A.J. Samed, D. Zhang, S. Hinokuma and M. MacHida, J. Ceram. Soc. Jpn., 119, 81 (2011); https://doi.org/10.2109/jcersj2.119.81.
- A.J. Samed, T. Tanaka, K. Ikeue and M. Machida, Top. Catal., 53, 591 (2010); https://doi.org/10.1007/s11244-010-9492-x.
- A.J. Samed, T. Tanaka, S. Hamada, K. Ikeue and M. Machida, Catal. Commun., 10, 1995 (2009); https://doi.org/10.1016/j.catcom.2009.07.016.
- M. Machida, K. Murakami, S. Hinokuma, K. Uemura, K. Ikeue, M. Matsuda, M. Chai, Y. Nakahara and T. Sato, Chem. Mater., 21, 1796 (2009); https://doi.org/10.1021/cm9005844.
- S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan and E.M. Flanigen, J. Am. Chem. Soc., 104, 1146 (1982); https://doi.org/10.1021/ja00368a062.
- M.E. Davis, Nature, 417, 813 (2002); https://doi.org/10.1038/nature00785.
- A. Kuperman, S. Nadimi, S. Oliver, G.A. Ozin, J.M. Garces and M.M. Olken, Nature, 365, 239 (1993); https://doi.org/10.1038/365239a0.
- S.H. Jhung, J.S. Chang, Y.K. Hwang and S.E. Park, J. Mater. Chem., 14, 280 (2004); https://doi.org/10.1039/b309142b.
- S. Feng and T. Bein, Science, 265, 1839 (1994); https://doi.org/10.1126/science.265.5180.1839.
- W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); https://doi.org/10.1126/science.1069156.
- T. Mun, A.M. Prakash, L. Kevan and K.J. Balkus, J. Phys. Chem. B, 102, 1379 (1998); https://doi.org/10.1021/jp973240i.
- C. Montes, M.E. Davis, B. Murray and M. Narayana, J. Phys. Chem., 94, 6425 (1990); https://doi.org/10.1021/j100379a049.
- A.M. Prakash, S. Unnikrishnan and K.V. Rao, Micropor. Mater., 2, 83 (1994); https://doi.org/10.1016/0927-6513(93)E0032-C
References
Y.J. Huang, H.P. Wang, C.T. Yeh, S.H. Liu and B.C. Chang, Environ. Technol., 24, 377 (2003); https://doi.org/10.1080/09593330309385570.
J. Cooper and P. Phillips, Platin. Met. Rev., 57, 157 (2013); https://doi.org/10.1595/147106713X663924.
M. Shelef, Catal. Rev., Sci. Eng., 11, 1 (1975); https://doi.org/10.1080/01614947508079980.
K.C. Taylor, Catal. Rev., Sci. Eng., 35, 457 (1993); https://doi.org/10.1080/01614949308013915.
G. Goula, P. Katzourakis, N. Vakakis, T. Papadam, M. Konsolakis, M. Tikhov and I.V. Yentekakis, Catal. Today, 127, 199 (2007); https://doi.org/10.1016/j.cattod.2007.03.008.
R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B, 39, 283 (2002); https://doi.org/10.1016/S0926-3373(02)00118-2.
R.J. Wu and C.T. Yeh, Int. J. Chem. Kinet., 28, 89 (1996); https://doi.org/10.1002/(SICI)1097-4601(1996)28:2<89::AID-KIN3>3.0.CO;2-H.
M.V. Twigg, Appl. Catal. B, 70, 2 (2007); https://doi.org/10.1016/j.apcatb.2006.02.029.
B. Harrison, B.J. Cooper and A.J.J. Wilkins, Platin. Met. Rev., 25, 14 (1981).
A. König, G. Herding, B. Hupfeld, T. Richter and K. Weidmann, Top. Catal., 16/17, 23 (2001); https://doi.org/10.1023/A:1016666327542.
S. Matsumoto, K. Yokota, H. Doi, M. Kimura, K. Sekizawa and S. Kasahara, Catal. Today, 22, 127 (1994); https://doi.org/10.1016/0920-5861(94)80097-9.
H.S. Gandhi, G.W. Graham and R.W. McCabe, J. Catal., 216, 433 (2003); https://doi.org/10.1016/S0021-9517(02)00067-2.
A.J. Samed, K. Uemura, K. Ikeue and M. Machida, Int. J. Environ. Stud., 70, 549 (2013); https://doi.org/10.1080/00207233.2013.816198.
A.J. Samed, D. Zhang, S. Hinokuma and M. MacHida, J. Ceram. Soc. Jpn., 119, 81 (2011); https://doi.org/10.2109/jcersj2.119.81.
A.J. Samed, T. Tanaka, K. Ikeue and M. Machida, Top. Catal., 53, 591 (2010); https://doi.org/10.1007/s11244-010-9492-x.
A.J. Samed, T. Tanaka, S. Hamada, K. Ikeue and M. Machida, Catal. Commun., 10, 1995 (2009); https://doi.org/10.1016/j.catcom.2009.07.016.
M. Machida, K. Murakami, S. Hinokuma, K. Uemura, K. Ikeue, M. Matsuda, M. Chai, Y. Nakahara and T. Sato, Chem. Mater., 21, 1796 (2009); https://doi.org/10.1021/cm9005844.
S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan and E.M. Flanigen, J. Am. Chem. Soc., 104, 1146 (1982); https://doi.org/10.1021/ja00368a062.
M.E. Davis, Nature, 417, 813 (2002); https://doi.org/10.1038/nature00785.
A. Kuperman, S. Nadimi, S. Oliver, G.A. Ozin, J.M. Garces and M.M. Olken, Nature, 365, 239 (1993); https://doi.org/10.1038/365239a0.
S.H. Jhung, J.S. Chang, Y.K. Hwang and S.E. Park, J. Mater. Chem., 14, 280 (2004); https://doi.org/10.1039/b309142b.
S. Feng and T. Bein, Science, 265, 1839 (1994); https://doi.org/10.1126/science.265.5180.1839.
W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science, 295, 2425 (2002); https://doi.org/10.1126/science.1069156.
T. Mun, A.M. Prakash, L. Kevan and K.J. Balkus, J. Phys. Chem. B, 102, 1379 (1998); https://doi.org/10.1021/jp973240i.
C. Montes, M.E. Davis, B. Murray and M. Narayana, J. Phys. Chem., 94, 6425 (1990); https://doi.org/10.1021/j100379a049.
A.M. Prakash, S. Unnikrishnan and K.V. Rao, Micropor. Mater., 2, 83 (1994); https://doi.org/10.1016/0927-6513(93)E0032-C