Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Novel Diorganotin(IV) Complexes Derived from N-Methyl-phenethyl Dithiocarbamate and Bis(2-ethoxyethyl) Dithiocarbamate
Corresponding Author(s) : Nurul Farahana Kamaludin
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Organotin(IV) dithiocarbamate complexes are extensively studied worldwide as they have proven to exhibit promising anticancer, antimicrobial and larvicidal properties. In this study, three new organotin(IV) dithiocarbamate complexes have been successfully synthesized via in situ reaction between the appropriate secondary amines with carbon disulphide and organotin(IV) salts, in a basic solution at temperature below 4 °C. The complexes were characterized by CHNS elemental analysis, FTIR and 1H, 13C and 119Sn NMR. All complexes displayed the important NCS2 peak from 200.02-201.35 ppm in 13C NMR, signifying the presence of the dithiocarbamate ligand. The complexes also produced the essential IR bands, ν(C-N), ν(C-S) and ν(Sn-C) in the ranges 1489 to 1479 cm–1, 986.2 to 971.2 cm–1 and 568.2 to 550.8 cm–1, respectively. From the 119Sn NMR, both the ligands were suggested to coordinate to the tin atom in a bidentate manner in all three complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Pellerito, L. Nagy, L. Pellerito and A. Szorcsik, J. Organomet. Chem., 691, 1733 (2006); https://doi.org/10.1016/j.jorganchem.2005.12.025.
- N. Awang, N.F. Kamaludin and A.R. Ghazali, Pak. J. Biol. Sci., 14, 768 (2011); https://doi.org/10.3923/pjbs.2011.768.774.
- J.O. Adeyemi, D.C. Onwudiwe and E.C. Hosten, J. Saudi Chem. Soc., 22, 427 (2017); https://doi.org/10.1016/j.jscs.2017.08.004.
- S. Khan, S.A.A. Nami and K.S. Siddiqi, J. Organomet. Chem., 693, 1049 (2008); https://doi.org/10.1016/j.jorganchem.2007.12.026.
- M.F. Basirah, M.F. Abu Hasan, N. Mohd Sidek, W.M. Khairul and N. Ismail, J. Appl. Sci. Res., 9, 5562 (2013).
- T.S. Basu Baul, Appl. Organomet. Chem., 22, 195 (2008); https://doi.org/10.1002/aoc.1378.
- S. Shahzadi, K. Shahid, S. Ali, M. Mazhar and K.M. Khan, J. Iran. Chem. Soc., 2, 277 (2005); https://doi.org/10.1007/BF03245931.
- F. Javed, S. Ali, S. Shahzadi, N. Khalid, S. Tabassum, I. Khan, S.K. Sharma and K. Qanungo, J. Chin. Chem. Soc. (Taipei), 62, 728 (2015); https://doi.org/10.1002/jccs.201500235.
- T.S. Basu Baul, A. Mizar, A.K. Chandra, X. Song, G. Eng, R. Jirásko, M. Holcapek, D. de Vos and A. Linden, J. Inorg. Biochem., 102, 1719 (2008); https://doi.org/10.1016/j.jinorgbio.2008.05.001.
- N.F. Kamaludin, N. Awang, I. Baba, A. Hamid and C.K. Meng, Pak. J. Biol. Sci., 16, 12 (2013); https://doi.org/10.3923/pjbs.2013.12.21.
- N. Khan, Y. Farina, L.K. Mun, N.F. Rajab and N. Awang, J. Mol. Struct., 1076, 403 (2014); https://doi.org/10.1016/j.molstruc.2014.08.015.
- N. Awang, Z.A. Aziz, N.F. Kamaludin and K.M. Chan, Online J. Biol. Sci., 14, 84 (2014); https://doi.org/10.3844/ojbsci.2014.84.93.
- X. Xiao, Y. Li, Y. Dong, W. Li, K. Xu, N. Shi, X. Liu, J. Xie and P. Liu, J. Mol. Struct., 1130, 901 (2017); https://doi.org/10.1016/j.molstruc.2016.10.083.
- N.F. Kamaludin, S.A. Zakaria, N. Awang, R. Mohamad and N.U. Pim, Orient. J. Chem., 33, 1756 (2017); https://doi.org/10.13005/ojc/330420.
- G. Eng, X. Song, Q. Duong, D. Strickman, J. Glass and L. May, Appl. Organomet. Chem., 17, 218 (2003); https://doi.org/10.1002/aoc.423.
- E.R.T. Tiekink, Appl. Organomet. Chem., 22, 533 (2008); https://doi.org/10.1002/aoc.1441.
- H. Nabipour, S. Ghammamy, S. Ashuri and Z.S. Aghbolagh, Org. Chem. J., 2, 75 (2010).
- O.S. Jung and Y.S. Sohn, Bull. Korean Chem. Soc., 9, 365 (1988).
- P.J. Heard, ed.: K.D. Karlin, Progress in Inorganic Chemistry, John Wiley & Sons, Inc., Chap. 1 (2005).
- B. Alama, B. Tasso, F. Novelli and F. Sparatore, Drug Discov. Today, 14, 500 (2009); https://doi.org/10.1016/j.drudis.2009.02.002.
- S.M. Amer, M.A. Fahmy, F.A.E. Aly and A.A. Farghaly, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 513, 1 (2002); https://doi.org/10.1016/S1383-5718(01)00261-3.
- K.J. Ivin and E.D. Lillie, Macromol. Chem. Phys., 179, 591 (1978); https://doi.org/10.1002/macp.1978.021790304.
- F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7.
- D.C. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci., 12, 1964 (2011); https://doi.org/10.3390/ijms12031964.
- J. Cookson and P.D. Beer, Dalton Trans., 15, 1459 (2007); https://doi.org/10.1039/b618088d.
- N. Khan, Y. Farina, L.K. Mun, N.F. Rajab and N. Awang, Polyhedron, 85, 754 (2015); https://doi.org/10.1016/j.poly.2014.08.063.
- R. Mohamad, N. Awang and N.F. Kamaludin, Res. J. Pharm. Biol. Chem. Sci., 7, 1920 (2016).
- H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062.
- N. Gupta, V. Kumar, V. Singh, A. Rajput, L.B. Prasad, M.G.B. Drew and N. Singh, J. Organomet. Chem., 787, 65 (2015); https://doi.org/10.1016/j.jorganchem.2015.03.034.
- J. Holecek, M. Nadvornik, K. Handlir and A. Lycka, J. Organomet. Chem., 315, 299 (1986); https://doi.org/10.1016/0022-328X(86)80450-8.
References
C. Pellerito, L. Nagy, L. Pellerito and A. Szorcsik, J. Organomet. Chem., 691, 1733 (2006); https://doi.org/10.1016/j.jorganchem.2005.12.025.
N. Awang, N.F. Kamaludin and A.R. Ghazali, Pak. J. Biol. Sci., 14, 768 (2011); https://doi.org/10.3923/pjbs.2011.768.774.
J.O. Adeyemi, D.C. Onwudiwe and E.C. Hosten, J. Saudi Chem. Soc., 22, 427 (2017); https://doi.org/10.1016/j.jscs.2017.08.004.
S. Khan, S.A.A. Nami and K.S. Siddiqi, J. Organomet. Chem., 693, 1049 (2008); https://doi.org/10.1016/j.jorganchem.2007.12.026.
M.F. Basirah, M.F. Abu Hasan, N. Mohd Sidek, W.M. Khairul and N. Ismail, J. Appl. Sci. Res., 9, 5562 (2013).
T.S. Basu Baul, Appl. Organomet. Chem., 22, 195 (2008); https://doi.org/10.1002/aoc.1378.
S. Shahzadi, K. Shahid, S. Ali, M. Mazhar and K.M. Khan, J. Iran. Chem. Soc., 2, 277 (2005); https://doi.org/10.1007/BF03245931.
F. Javed, S. Ali, S. Shahzadi, N. Khalid, S. Tabassum, I. Khan, S.K. Sharma and K. Qanungo, J. Chin. Chem. Soc. (Taipei), 62, 728 (2015); https://doi.org/10.1002/jccs.201500235.
T.S. Basu Baul, A. Mizar, A.K. Chandra, X. Song, G. Eng, R. Jirásko, M. Holcapek, D. de Vos and A. Linden, J. Inorg. Biochem., 102, 1719 (2008); https://doi.org/10.1016/j.jinorgbio.2008.05.001.
N.F. Kamaludin, N. Awang, I. Baba, A. Hamid and C.K. Meng, Pak. J. Biol. Sci., 16, 12 (2013); https://doi.org/10.3923/pjbs.2013.12.21.
N. Khan, Y. Farina, L.K. Mun, N.F. Rajab and N. Awang, J. Mol. Struct., 1076, 403 (2014); https://doi.org/10.1016/j.molstruc.2014.08.015.
N. Awang, Z.A. Aziz, N.F. Kamaludin and K.M. Chan, Online J. Biol. Sci., 14, 84 (2014); https://doi.org/10.3844/ojbsci.2014.84.93.
X. Xiao, Y. Li, Y. Dong, W. Li, K. Xu, N. Shi, X. Liu, J. Xie and P. Liu, J. Mol. Struct., 1130, 901 (2017); https://doi.org/10.1016/j.molstruc.2016.10.083.
N.F. Kamaludin, S.A. Zakaria, N. Awang, R. Mohamad and N.U. Pim, Orient. J. Chem., 33, 1756 (2017); https://doi.org/10.13005/ojc/330420.
G. Eng, X. Song, Q. Duong, D. Strickman, J. Glass and L. May, Appl. Organomet. Chem., 17, 218 (2003); https://doi.org/10.1002/aoc.423.
E.R.T. Tiekink, Appl. Organomet. Chem., 22, 533 (2008); https://doi.org/10.1002/aoc.1441.
H. Nabipour, S. Ghammamy, S. Ashuri and Z.S. Aghbolagh, Org. Chem. J., 2, 75 (2010).
O.S. Jung and Y.S. Sohn, Bull. Korean Chem. Soc., 9, 365 (1988).
P.J. Heard, ed.: K.D. Karlin, Progress in Inorganic Chemistry, John Wiley & Sons, Inc., Chap. 1 (2005).
B. Alama, B. Tasso, F. Novelli and F. Sparatore, Drug Discov. Today, 14, 500 (2009); https://doi.org/10.1016/j.drudis.2009.02.002.
S.M. Amer, M.A. Fahmy, F.A.E. Aly and A.A. Farghaly, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 513, 1 (2002); https://doi.org/10.1016/S1383-5718(01)00261-3.
K.J. Ivin and E.D. Lillie, Macromol. Chem. Phys., 179, 591 (1978); https://doi.org/10.1002/macp.1978.021790304.
F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7.
D.C. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci., 12, 1964 (2011); https://doi.org/10.3390/ijms12031964.
J. Cookson and P.D. Beer, Dalton Trans., 15, 1459 (2007); https://doi.org/10.1039/b618088d.
N. Khan, Y. Farina, L.K. Mun, N.F. Rajab and N. Awang, Polyhedron, 85, 754 (2015); https://doi.org/10.1016/j.poly.2014.08.063.
R. Mohamad, N. Awang and N.F. Kamaludin, Res. J. Pharm. Biol. Chem. Sci., 7, 1920 (2016).
H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062.
N. Gupta, V. Kumar, V. Singh, A. Rajput, L.B. Prasad, M.G.B. Drew and N. Singh, J. Organomet. Chem., 787, 65 (2015); https://doi.org/10.1016/j.jorganchem.2015.03.034.
J. Holecek, M. Nadvornik, K. Handlir and A. Lycka, J. Organomet. Chem., 315, 299 (1986); https://doi.org/10.1016/0022-328X(86)80450-8.