Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Reactions of Aldehydes/Ketones at Sacrificial Nickel Anode: Synthesis and Characterization of Nickel(II) Glycolates and Their Coordination Complexes
Corresponding Author(s) : Baljit Singh
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Complexes of some aldehydes (acetaldehyde, propionaldehyde, butyraldehyde, cinnamaldehyde and benzaldehyde) and ketones (ethyl methyl ketone, isobutyl methyl ketone, acetophenone, benzophenone and p-chlorobenzophenone) have been synthesized at sacrificial nickel anode and inert platinum cathode using tetrabutylammonium chloride as supporting electrolyte. Characterization of compounds by vibrational spectroscopy, elemental analysis and physical measurements confirm that these compounds are unique polymeric nickel(II) glycolates of general formula {Ni(RR’CO)2}n. Refluxing of these glycolates with ligand (2,2’-bipyridyl or 1,10-phenanthroline) does not synthesize coordination compounds. However, the coordination complexes have been synthesized by electrolyzing the aldehyde/ketone in the presence of ligand in acetonitrile at sacrificial nickel anode. Current efficiency of all these systems has been determined in order to check the viability of these reactions on commercial scale.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.J. Horn, B.R. Rosen and P.S. Baran, ACS Cent. Sci., 2, 302 (2016); https://doi.org/10.1021/acscentsci.6b00091.
- J.E. Dick and D. Chong, Org. Chem. Curr. Res., 1, e113 (2012); https://doi.org/10.4172/2161-0401.1000e113.
- B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma and R. VasquezMedrano, Green Chem., 12, 2099 (2010); https://doi.org/10.1039/c0gc00382d.
- A.M. Vecchio-Sadus, J. Appl. Electrochem., 23, 401 (1993); https://doi.org/10.1007/BF00707616.
- A.D. Garnovskii, L.M. Blanco, B.I. Kharisov, D.A. Garnovskii and A.S. Burlov, J. Coord. Chem., 48, 219 (1999); https://doi.org/10.1080/00958979908024555.
- G.H.A. Therese and P.V. Kamath, Chem. Mater., 12, 1195 (2000); https://doi.org/10.1021/cm990447a.
- S.R. Long and J.J. Lagowski, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 813 (2007); https://doi.org/10.1080/15533170701748548.
- A.P. Tomilov and I.N. Chernykh, Pharm. Chem. J., 28, 573 (1994); https://doi.org/10.1007/BF02219034.
- S. Torres, R. Brown, R. Szucs, J.M. Hawkins, G. Scrivens, A. Pettman, D. Kraus and M.R. Taylor, Org. Process Res. Dev., 19, 1596 (2015); https://doi.org/10.1021/op500312e.
- I.A. Novoselova, S.V. Kuleshov, S.V. Volkov and V.N. Bykov, Electrochim. Acta, 211, 343 (2016); https://doi.org/10.1016/j.electacta.2016.05.160.
- R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x.
- J.S. Banait, S.K. Deol and B. Singh, Synth. React. Inorg. Met.-Org. Chem., 20, 1331 (1990); https://doi.org/10.1080/00945719008048637.
- J.S. Banait and B. Singh, Indian J. Chem., 30A, 895 (1991).
- J.S. Banait, B. Lal and B. Singh, J. Electrochem Soc., 41, 23 (1992).
- J.S. Banait and B. Singh, J. Electrochem Soc., 45, 103 (1996).
- J.S. Banait, B. Singh and H. Kaur, Indian J. Chem., 46A, 266 (2007).
- J.S. Banait, B. Singh and S. Rala, J. Indian Chem. Soc., 84, 25 (2007).
- B. Singh and H. Kaur, J. Indian Chem. Soc., 85, 849 (2008).
- B. Singh, Shavina and K. Bala, Chem. Sci. Rev. Lett., 3, 367 (2014).
- E.E. Grinberg, I.E. Strelnikova, A.E. Amelina and Y.I. Levin, Inorg. Mater.: Appl. Res., 8, 21 (2017); https://doi.org/10.1134/S2075113317010166.
- F. Tao, M. Guan, Y. Zhou, L. Zhang, Z. Xu and J. Chen, Cryst. Growth Des., 8, 2157 (2008); https://doi.org/10.1021/cg7012123.
- A.I. Vogel, Text book of Quantitative Chemical Analysis, Longman group UK Ltd., edn 5 (1989).
- J.R. Dyer’s, Applications of Absorption Spectroscopy of Organic Compound, Prentice-Hall of India Pvt. Ltd., New Delhi (1969).
- A.A. Olanrewaju, T.I. Oni and A.A. Osowole, Chem. Res. J., 1, 90 (2016).
- M.V. Chaud, A.C. Lima, M.M.D.C. Vila, M.O. Paganelli, F.C. Paula, L.N. Pedreiro and M.P.D. Gremião, Trop. J. Pharm. Res., 12, 163 (2013); https://doi.org/10.4314/tjpr.v12i2.5.
- J.S. Banait, N. Arora and B. Singh, J. Electrochem Soc., 49, 10 (2000).
- J.S. Banait, B. Singh and H. Kaur, J. Indian Chem. Soc., 88, 641 (2011).
- K. Bala and B. Singh, World J. Pharm. Pharm. Sci., 5, 1864 (2016).
- N.B. Sharma, J. Shahai, R.S. Ghadwal, A. Singh, E. Jeanneau and S. Mishra, J. Coord. Chem., 69, 135 (2016); https://doi.org/10.1080/00958972.2015.1112900.
- K. Takasea, H. Nishizawa, A. Onda, K. Yanagisawa and S. Yin, J. Asian Ceramic Soc., 5, 482 (2017); https://doi.org/10.1016/j.jascer.2017.10.007.
- M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 38A, 1209 (1999).
- N. Phonthammachai, T. Chairassameewong, E. Gulari, A.M. Jamieson and S. Wongkasemjit, J. Metals Mater. Minerals (Chulalongkorn Univ.), 12, 23 (2002).
- D.C. Bradley and A.H. Westlake, Proceedings of Symposium in Coordination Chemistry, Hungarian Academy of Science, Budapest, p. 309 (1965).
- G.A. Kakos and G. Winter, Aust. J. Chem., 20, 2343 (1967); https://doi.org/10.1071/CH9672343.
- C.H. Brubaker Jr. and M. Wicholas, J. Inorg. Nucl. Chem., 27, 59 (1965); https://doi.org/10.1016/0022-1902(65)80190-7.
- A.J. Pallenberg, K.S. Koenig and D.M. Barnhart, Inorg. Chem., 34, 2833 (1995); https://doi.org/10.1021/ic00115a009.
- S. Tosonian, C. J. Ruiz, A. Rios, E. Frias and J.F. Eichler, Open J. Inorg. Chem., 3, 7 (2013); https://doi.org/10.4236/ojic.2013.31002.
- P.L. Bellavance, E.R. Corey, J.Y. Corey and G.W. Hey, Inorg. Chem., 16, 462 (1977); https://doi.org/10.1021/ic50168a048
References
E.J. Horn, B.R. Rosen and P.S. Baran, ACS Cent. Sci., 2, 302 (2016); https://doi.org/10.1021/acscentsci.6b00091.
J.E. Dick and D. Chong, Org. Chem. Curr. Res., 1, e113 (2012); https://doi.org/10.4172/2161-0401.1000e113.
B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma and R. VasquezMedrano, Green Chem., 12, 2099 (2010); https://doi.org/10.1039/c0gc00382d.
A.M. Vecchio-Sadus, J. Appl. Electrochem., 23, 401 (1993); https://doi.org/10.1007/BF00707616.
A.D. Garnovskii, L.M. Blanco, B.I. Kharisov, D.A. Garnovskii and A.S. Burlov, J. Coord. Chem., 48, 219 (1999); https://doi.org/10.1080/00958979908024555.
G.H.A. Therese and P.V. Kamath, Chem. Mater., 12, 1195 (2000); https://doi.org/10.1021/cm990447a.
S.R. Long and J.J. Lagowski, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 813 (2007); https://doi.org/10.1080/15533170701748548.
A.P. Tomilov and I.N. Chernykh, Pharm. Chem. J., 28, 573 (1994); https://doi.org/10.1007/BF02219034.
S. Torres, R. Brown, R. Szucs, J.M. Hawkins, G. Scrivens, A. Pettman, D. Kraus and M.R. Taylor, Org. Process Res. Dev., 19, 1596 (2015); https://doi.org/10.1021/op500312e.
I.A. Novoselova, S.V. Kuleshov, S.V. Volkov and V.N. Bykov, Electrochim. Acta, 211, 343 (2016); https://doi.org/10.1016/j.electacta.2016.05.160.
R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin and T. Scheper, J. Nanopart. Res., 11, 1193 (2009); https://doi.org/10.1007/s11051-008-9513-x.
J.S. Banait, S.K. Deol and B. Singh, Synth. React. Inorg. Met.-Org. Chem., 20, 1331 (1990); https://doi.org/10.1080/00945719008048637.
J.S. Banait and B. Singh, Indian J. Chem., 30A, 895 (1991).
J.S. Banait, B. Lal and B. Singh, J. Electrochem Soc., 41, 23 (1992).
J.S. Banait and B. Singh, J. Electrochem Soc., 45, 103 (1996).
J.S. Banait, B. Singh and H. Kaur, Indian J. Chem., 46A, 266 (2007).
J.S. Banait, B. Singh and S. Rala, J. Indian Chem. Soc., 84, 25 (2007).
B. Singh and H. Kaur, J. Indian Chem. Soc., 85, 849 (2008).
B. Singh, Shavina and K. Bala, Chem. Sci. Rev. Lett., 3, 367 (2014).
E.E. Grinberg, I.E. Strelnikova, A.E. Amelina and Y.I. Levin, Inorg. Mater.: Appl. Res., 8, 21 (2017); https://doi.org/10.1134/S2075113317010166.
F. Tao, M. Guan, Y. Zhou, L. Zhang, Z. Xu and J. Chen, Cryst. Growth Des., 8, 2157 (2008); https://doi.org/10.1021/cg7012123.
A.I. Vogel, Text book of Quantitative Chemical Analysis, Longman group UK Ltd., edn 5 (1989).
J.R. Dyer’s, Applications of Absorption Spectroscopy of Organic Compound, Prentice-Hall of India Pvt. Ltd., New Delhi (1969).
A.A. Olanrewaju, T.I. Oni and A.A. Osowole, Chem. Res. J., 1, 90 (2016).
M.V. Chaud, A.C. Lima, M.M.D.C. Vila, M.O. Paganelli, F.C. Paula, L.N. Pedreiro and M.P.D. Gremião, Trop. J. Pharm. Res., 12, 163 (2013); https://doi.org/10.4314/tjpr.v12i2.5.
J.S. Banait, N. Arora and B. Singh, J. Electrochem Soc., 49, 10 (2000).
J.S. Banait, B. Singh and H. Kaur, J. Indian Chem. Soc., 88, 641 (2011).
K. Bala and B. Singh, World J. Pharm. Pharm. Sci., 5, 1864 (2016).
N.B. Sharma, J. Shahai, R.S. Ghadwal, A. Singh, E. Jeanneau and S. Mishra, J. Coord. Chem., 69, 135 (2016); https://doi.org/10.1080/00958972.2015.1112900.
K. Takasea, H. Nishizawa, A. Onda, K. Yanagisawa and S. Yin, J. Asian Ceramic Soc., 5, 482 (2017); https://doi.org/10.1016/j.jascer.2017.10.007.
M. Sharma, A. Singh and R.C. Mehrotra, Indian J. Chem., 38A, 1209 (1999).
N. Phonthammachai, T. Chairassameewong, E. Gulari, A.M. Jamieson and S. Wongkasemjit, J. Metals Mater. Minerals (Chulalongkorn Univ.), 12, 23 (2002).
D.C. Bradley and A.H. Westlake, Proceedings of Symposium in Coordination Chemistry, Hungarian Academy of Science, Budapest, p. 309 (1965).
G.A. Kakos and G. Winter, Aust. J. Chem., 20, 2343 (1967); https://doi.org/10.1071/CH9672343.
C.H. Brubaker Jr. and M. Wicholas, J. Inorg. Nucl. Chem., 27, 59 (1965); https://doi.org/10.1016/0022-1902(65)80190-7.
A.J. Pallenberg, K.S. Koenig and D.M. Barnhart, Inorg. Chem., 34, 2833 (1995); https://doi.org/10.1021/ic00115a009.
S. Tosonian, C. J. Ruiz, A. Rios, E. Frias and J.F. Eichler, Open J. Inorg. Chem., 3, 7 (2013); https://doi.org/10.4236/ojic.2013.31002.
P.L. Bellavance, E.R. Corey, J.Y. Corey and G.W. Hey, Inorg. Chem., 16, 462 (1977); https://doi.org/10.1021/ic50168a048