Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural Elucidation of Borate Glasses by Spectroscopic and SEM Studies
Corresponding Author(s) : S. Thirumaran
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
Glass samples of composition (B2O3-WO3-Bi2O3) BTB glass systems and (B2O3-SiO2-Bi2O3) BSB glass systems with ranging from 2 mol % are prepared by melt quenching technique. The structural analysis of glasses is analyzed by Fourier-transform infrared, UV-visible and scanning electron microscopy studies. The FTIR spectrum identifies the broad absorption bands indicated the wide distribution of borate structural units. The UV-visible study observes the increasing band gap energies of glass specimen suggesting their nature of rigidity. The surface morphological aspects of the prepared glass samples are examined by scanning electron microscopy study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sanghi, S. Duhan, A. Agarwal and P. Aghamkar, J. Alloys Compd., 488, 454 (2009); https://doi.org/10.1016/j.jallcom.2009.09.009.
- B. Wang, J. Nisar, C.G. Almeida, A.J.S. Mascarenhas, L.A. Silva, D.G.F. David, P. Bargiela, C.M. Araujo, R. Ahuja and A.F. da Silva, Phys. Status Solidi B, 251, 1034 (2014); https://doi.org/10.1002/pssb.201350265.
- A.A. Abou Shama and F.H. El-Batal, Egyptian J. Solids, 29, 49 (2006).
- W.A. Pisarski, J. Pisarska, G. Dominiak-Dzik and W. Ryba-Romanowski, J. Phys. Condens. Matter, 16, 6171 (2004); https://doi.org/10.1088/0953-8984/16/34/016.
- R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar and N. Kishore, Physica B, 450, 39 (2014); https://doi.org/10.1016/j.physb.2014.05.056.
- V. Sharma, S.P. Singh, G.S. Mudahar and K.S. Thind, N.J. Glass Ceramics, 2, 133 (2012); https://doi.org/10.4236/njgc.2012.24022.
- F.L. Galeener, G. Lucovsky and J.C. Mikkelsen Jr., Phys. Rev. B, 22, 3983 (1980); https://doi.org/10.1103/PhysRevB.22.3983.
- M.C. Weinberg, J. Non-Cryst. Solids, 127, 151 (1991); https://doi.org/10.1016/0022-3093(91)90137-U.
- D. Boudlich, L. Bih, M.E.H. Archidi, M. Haddad, A. Yacoubi, A. Nadiri and B. Elouadi, J. Am. Ceram. Soc., 85, 623 (2002); https://doi.org/10.1111/j.1151-2916.2002.tb00141.x.
- E.I. Kamitsos, A.P. Patsis, M.A. Karakassides and G.D. Chryssikos, J. Non-Cryst. Solids, 126, 52 (1990); https://doi.org/10.1016/0022-3093(90)91023-K.
- R.D. Husung and R.H. Doremus, J. Mater. Res., 5, 2209 (1990); https://doi.org/10.1557/JMR.1990.2209.
- W.H. Dumbaugh, Phys. Chem. Glasses, 27, 119 (1986).
- F.H. El Batal, Nucl. Instrum. Methods, 254, 243 (2007); https://doi.org/10.1016/j.nimb.2006.11.043.
- I. Ardelean, S. Cora, R. Ciceo Lucacel and O. Hulpus, Solid State Sci., 7, 1438 (2005); https://doi.org/10.1016/j.solidstatesciences.2005.08.017.
- E.I. Kamitsos, M.A. Karakassides and A.P. Patsis, J. Non-Cryst. Solids, 111, 252 (1989); https://doi.org/10.1016/0022-3093(89)90288-3.
- N.O. Dantas, W.E.F. Ayta, A.C.A. Silva, N.F. Cano, S.W. Silva and P.C. Morais, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 140 (2011); https://doi.org/10.1016/j.saa.2011.05.074.
- Y. Ito, K. Miyauchi and T. Oi, J. Non-Cryst. Solids, 57, 389 (1983); https://doi.org/10.1016/0022-3093(83)90426-X.
- A. Beganskiene, V. Sirutkaitis, M. Kurtinaitiene, R. Juskenas and A. Kareiva, Mater. Sci. (Medziagotyra), 10, 287 (2004).
- A.E. Morales, E.S. Mora and U. Pal, Rev. Mex. Fisica, S53, 18 (2007).
- G. David, R. Luo, M.S. Head and M.K. Gilson, J. Phys. Chem. B, 103, 1031 (1999); https://doi.org/10.1021/jp983675l.
- M.W. Mackenzie, Advances in Applied Fourier Transform Infrared Spectroscopy, John Wiley, New York (1988).
- N.B. Colthup, L.W. Daly and S.E. Wiberley, Academic Press, San Diego, edn 3 (1990).
- P. Kubelka, J. Oct. Soc. Am., 38, 448 (1948); https://doi.org/10.1364/JOSA.38.000448.
- P. Kubelka and F. Munk, Z. Tech. Phys., 12, 593 (1931).
- X. Gao and I. Wachs, J. Phys. Chem. B, 104, 1261 (2000); https://doi.org/10.1021/jp992867t.
- Von W.N. Delgass, G.L. Haller, R. Kellerman and J.H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Acadamic Press: New York, p. 86 (1979).
- B. Eraiah, Bull. Mater. Sci., 29, 375 (2006); https://doi.org/10.1007/BF02704138.
- N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan and A. Mondal, J. Mater. Lett., 65, 3248 (2011); https://doi.org/10.1016/j.matlet.2011.07.016.
- S. Valencia, J.M. Marín and G. Restrepo, The Open Mater. Sci. J., 4, 9 (2010); https://doi.org/10.2174/1874088X01004010009.
- S. Kumar, Z. Jindal, N. Kumari and N.K. Verma, J. Nanopart. Res., 13, 5465 (2011); https://doi.org/10.1007/s11051-011-0534-5.
- G. Sharma, K. Singh, Manupriya, S. Singh, H. Singh and S. Bindra, Radiat. Phys. Chem., 75, 959 (2006); https://doi.org/10.1016/j.radphyschem.2006.02.008.
- S.E. Aw, H.S. Tan and C.K. Ong, J. Phys. Condens. Matter, 3, 8213 (1991); https://doi.org/10.1088/0953-8984/3/42/016.
References
S. Sanghi, S. Duhan, A. Agarwal and P. Aghamkar, J. Alloys Compd., 488, 454 (2009); https://doi.org/10.1016/j.jallcom.2009.09.009.
B. Wang, J. Nisar, C.G. Almeida, A.J.S. Mascarenhas, L.A. Silva, D.G.F. David, P. Bargiela, C.M. Araujo, R. Ahuja and A.F. da Silva, Phys. Status Solidi B, 251, 1034 (2014); https://doi.org/10.1002/pssb.201350265.
A.A. Abou Shama and F.H. El-Batal, Egyptian J. Solids, 29, 49 (2006).
W.A. Pisarski, J. Pisarska, G. Dominiak-Dzik and W. Ryba-Romanowski, J. Phys. Condens. Matter, 16, 6171 (2004); https://doi.org/10.1088/0953-8984/16/34/016.
R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar and N. Kishore, Physica B, 450, 39 (2014); https://doi.org/10.1016/j.physb.2014.05.056.
V. Sharma, S.P. Singh, G.S. Mudahar and K.S. Thind, N.J. Glass Ceramics, 2, 133 (2012); https://doi.org/10.4236/njgc.2012.24022.
F.L. Galeener, G. Lucovsky and J.C. Mikkelsen Jr., Phys. Rev. B, 22, 3983 (1980); https://doi.org/10.1103/PhysRevB.22.3983.
M.C. Weinberg, J. Non-Cryst. Solids, 127, 151 (1991); https://doi.org/10.1016/0022-3093(91)90137-U.
D. Boudlich, L. Bih, M.E.H. Archidi, M. Haddad, A. Yacoubi, A. Nadiri and B. Elouadi, J. Am. Ceram. Soc., 85, 623 (2002); https://doi.org/10.1111/j.1151-2916.2002.tb00141.x.
E.I. Kamitsos, A.P. Patsis, M.A. Karakassides and G.D. Chryssikos, J. Non-Cryst. Solids, 126, 52 (1990); https://doi.org/10.1016/0022-3093(90)91023-K.
R.D. Husung and R.H. Doremus, J. Mater. Res., 5, 2209 (1990); https://doi.org/10.1557/JMR.1990.2209.
W.H. Dumbaugh, Phys. Chem. Glasses, 27, 119 (1986).
F.H. El Batal, Nucl. Instrum. Methods, 254, 243 (2007); https://doi.org/10.1016/j.nimb.2006.11.043.
I. Ardelean, S. Cora, R. Ciceo Lucacel and O. Hulpus, Solid State Sci., 7, 1438 (2005); https://doi.org/10.1016/j.solidstatesciences.2005.08.017.
E.I. Kamitsos, M.A. Karakassides and A.P. Patsis, J. Non-Cryst. Solids, 111, 252 (1989); https://doi.org/10.1016/0022-3093(89)90288-3.
N.O. Dantas, W.E.F. Ayta, A.C.A. Silva, N.F. Cano, S.W. Silva and P.C. Morais, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 140 (2011); https://doi.org/10.1016/j.saa.2011.05.074.
Y. Ito, K. Miyauchi and T. Oi, J. Non-Cryst. Solids, 57, 389 (1983); https://doi.org/10.1016/0022-3093(83)90426-X.
A. Beganskiene, V. Sirutkaitis, M. Kurtinaitiene, R. Juskenas and A. Kareiva, Mater. Sci. (Medziagotyra), 10, 287 (2004).
A.E. Morales, E.S. Mora and U. Pal, Rev. Mex. Fisica, S53, 18 (2007).
G. David, R. Luo, M.S. Head and M.K. Gilson, J. Phys. Chem. B, 103, 1031 (1999); https://doi.org/10.1021/jp983675l.
M.W. Mackenzie, Advances in Applied Fourier Transform Infrared Spectroscopy, John Wiley, New York (1988).
N.B. Colthup, L.W. Daly and S.E. Wiberley, Academic Press, San Diego, edn 3 (1990).
P. Kubelka, J. Oct. Soc. Am., 38, 448 (1948); https://doi.org/10.1364/JOSA.38.000448.
P. Kubelka and F. Munk, Z. Tech. Phys., 12, 593 (1931).
X. Gao and I. Wachs, J. Phys. Chem. B, 104, 1261 (2000); https://doi.org/10.1021/jp992867t.
Von W.N. Delgass, G.L. Haller, R. Kellerman and J.H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Acadamic Press: New York, p. 86 (1979).
B. Eraiah, Bull. Mater. Sci., 29, 375 (2006); https://doi.org/10.1007/BF02704138.
N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan and A. Mondal, J. Mater. Lett., 65, 3248 (2011); https://doi.org/10.1016/j.matlet.2011.07.016.
S. Valencia, J.M. Marín and G. Restrepo, The Open Mater. Sci. J., 4, 9 (2010); https://doi.org/10.2174/1874088X01004010009.
S. Kumar, Z. Jindal, N. Kumari and N.K. Verma, J. Nanopart. Res., 13, 5465 (2011); https://doi.org/10.1007/s11051-011-0534-5.
G. Sharma, K. Singh, Manupriya, S. Singh, H. Singh and S. Bindra, Radiat. Phys. Chem., 75, 959 (2006); https://doi.org/10.1016/j.radphyschem.2006.02.008.
S.E. Aw, H.S. Tan and C.K. Ong, J. Phys. Condens. Matter, 3, 8213 (1991); https://doi.org/10.1088/0953-8984/3/42/016.