Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spectroscopic Studies of Interaction of Protein with Cerium Oxide Nanoparticles
Corresponding Author(s) : Suja Abraham
Asian Journal of Chemistry,
Vol. 30 No. 6 (2018): Vol 30 Issue 6
Abstract
In anticancer therapy research, metal oxide nanoparticles are used experimentally to directly kill tumor cells in vitro and in vivo. Cerium oxide nanoparticles can be used to treat cancer and several other diseases. Structural changes of adsorbed protein are necessary for cellular uptake of nanoparticles. Therefore, in order to find structural changes of bovine serum albumin (BSA) when it interacts with cerium oxide nanoparticles spectroscopic studies were conducted.The changes in fluorescence emission parameters of bovine serum albumin with increasing concentrations of cerium oxide nanoparticles indicated minor conformational changes in the structure of bovine serum albumin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Seigneuric, L. Markey, D. S.A. Nuyten, C. Dubernet, C.T.A. Evelo, E. Finot and C. Garrido, Curr. Mol. Med., 10, 640 (2010); https://doi.org/10.2174/156652410792630634.
- M. Vinardell and M. Mitjans, Nanomaterials, 5, 1004 (2015); https://doi.org/10.3390/nano5021004.
- M.S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao and C.H. Baker, Nanomedicine, 9, 558 (2013); https://doi.org/10.1016/j.nano.2012.10.010.
- D. Schubert, R. Dargusch, J. Raitano and S.W. Chan, Biochem. Biophys. Res. Commun., 342, 86 (2006); https://doi.org/10.1016/j.bbrc.2006.01.129.
- M. Pesic, A. Podolski-Renic, S. Stojkovic, B. Matovic, D. Zmejkoski, V. Kojic, G. Bogdanovic, A. Pavicevic, M. Mojovic, A. Savic, I. Milenkovic, A. Kalauzi and K. Radotic, Chem. Biol. Interact., 232, 85 (2015); https://doi.org/10.1016/j.cbi.2015.03.013.
- L. Kong, X. Cai, X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal and J.F. McGinnis, Neurobiol. Dis., 42, 514 (2011); https://doi.org/10.1016/j.nbd.2011.03.004.
- N. Pourkhalili, A. Hosseini, A. Nili-Ahmadabadi, S. Hassani, M. Pakzad, M. Baeeri, A. Mohammadirad and M. Abdollahi, World J. Diabetes, 2, 204 (2011); https://doi.org/10.4239/wjd.v2.i11.204.
- J. Colon, N. Hsieh, A. Ferguson, P. Kupelian, S. Seal, D.W. Jenkins and C.H. Baker, Nanomedicine, 6, 698 (2010); https://doi.org/10.1016/j.nano.2010.01.010.
- J. Chen, S. Patil, S. Seal and J.F. McGinnis, Nat. Nanotechnol., 1, 142 (2006); https://doi.org/10.1038/nnano.2006.91.
- A.Y. Estevez and J.S. Erlichman, Nanomedicine, 9, 1437 (2014); https://doi.org/10.2217/nnm.14.87.
- M. Li, P. Shi, C. Xu, J. Ren and X. Qu, Chem. Sci., 4, 2536 (2013); https://doi.org/10.1039/c3sc50697e.
- Y. Gao, F. Gao, K. Chen and J. Ma, Onco Targets Ther., 7, 835 (2014); https://doi.org/10.2147/OTT.S62057.
- M.S. Wason and J. Zhao, Am. J. Transl. Res., 5, 126 (2013).
- S.H. Jung, S.J. Choi, H.J. Kim and T.W. Moon, Biosci. Biotechnol. Biochem., 70, 2064 (2006); https://doi.org/10.1271/bbb.60026.
- L. Shang, Y.Z. Wang, J.G. Jiang and S. Dong, Langmuir, 23, 2714 (2007); https://doi.org/10.1021/la062064e.
- C.D. Walkey and W.C. Chan, Chem. Soc. Rev., 41, 2780 (2012); https://doi.org/10.1039/C1CS15233E.
- M.P. Monopoli, C. Aberg, A. Salvati and K.A. Dawson, Nat. Nano, 7, 779 (2012); https://doi.org/10.1038/nnano.2012.207.
- C.C. Fleischer and C.K. Payne, J. Phys. Chem. B, 118, 14017 (2014); https://doi.org/10.1021/jp502624n.
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, edn 3, p. 277 (2006).
- A.K. Bhunia, P.K. Samanta, S. Saha and T. Kamilya, Appl. Phys. Lett., 103, 143701 (2013); https://doi.org/10.1063/1.4824021.
- A. Kathiravan and R. Renganathan, Colloids Surf. A, 324, 176 (2008); https://doi.org/10.1016/j.colsurfa.2008.04.017.
- A. Kathiravan, R. Renganathan and S. Anandan, Polyhedron, 28, 157 (2009); https://doi.org/10.1016/j.poly.2008.09.023.
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers, Dordrecht, edn 2 (1999).
- G. Sekar, N.P. Kumar, A. Mukherjee and N. Chandrasekaran, Int. J. Biol. Macromol., 103, 1138 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.180.
- X. Gao, Y. Tang, W. Rong, X. Zhang, W. Zhao and Y. Zi, Am. J. Anal. Chem., 2, 250 (2011); https://doi.org/10.4236/ajac.2011.22030.
- S. Abraham, Asian J. Chem., 29, 821 (2017); https://doi.org/10.14233/ajchem.2017.20321.
- A. Bhogale, N. Patel, P. Sarpotdar, J. Mariam, P.M. Dongre, A. Miotello and D.C. Kothari, Colloids Surf. B Biointerfaces, 102, 257 (2013); https://doi.org/10.1016/j.colsurfb.2012.08.023.
- D.A. Kelkar, A. Chaudhuri, S. Haldar and A. Chattopadhyay, Eur. Biophys. J., 39, 1453 (2010); https://doi.org/10.1007/s00249-010-0603-1.
- R. De-Llanos, S. Sanchez-Cortes, C. Domingo, J.V. Garcia-Ramos and P. Sevilla, J. Phys. Chem. C, 115, 12419 (2011); https://doi.org/10.1021/jp111683c.
- J.S. Johansson, J. Biol. Chem., 272, 17961 (1997); https://doi.org/10.1074/jbc.272.29.17961.
- A. Bhogale, N. Patel, J. Mariam, P.M. Dongre, A. Miotello and D.C. Kothari, Colloids Surf. B Biointerfaces, 113, 276 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.021.
- S.A.A. Latheef, G. Chakravarthy, D. Mallaiah and M. Ramanadham, J. Appl. Spectrosc., 83, 896 (2016); https://doi.org/10.1007/s10812-016-0381-3.
- P. Esfandfar, M. Falahati and A.A. Saboury, J. Biomol. Struct. Dyn., 1096213, (2015); https://doi.org/10.1080/07391102.2015.1096213.
- A. Kathiravan, G. Paramaguru and R. Renganathan, J. Mol. Struct., 934, 129 (2009); https://doi.org/10.1016/j.molstruc.2009.06.032.
- D.M. Togashi, A.G. Ryder, D.M. Mahon, P. Dunne and J. McManus, Proc. of SPIE-OSA Biomed. Optics, 6628 (2007). https://doi.org/10.1364/ECBO.2007.6628_61.
- X.Y. Gao and W. Wen, Wuli Huaxue Xuebao, 28, 417 (2012); https://doi.org/10.3866/PKU.WHXB201112051.
- W. Liu, J. Rose, S. Plantevin, M. Auffan, J.-Y. Bottero and C. Vidaud, Nanoscale, 5, 1658 (2013); https://doi.org/10.1039/c2nr33611a.
- S.N. Gajalakshmi, P. Kumar, A. Mukherjee and N. Chandrasekaran, J. Lumin., 161, 187 (2014); https://doi.org/10.1016/j.jlumin.2014.12.058.
- S.Y.M. Jajroud, M. Falahati, F. Attar and R.A.K. Nejad, J. Biomol. Struct. Dyn., 9, (2017); https://doi.org/10.1080/07391102.2017.1371645.
- D. Yuan, Z. Shen, R. Liu, Z. Chi and J. Zhu, J. Biochem. Mol. Toxicol., 25, 263 (2011); https://doi.org/10.1002/jbt.20385.
- M. Maity, S.K. Pramanik, U. Pal, B. Banerji and N.C. Maiti, J. Nanopart. Res., 16, 2179 (2014); https://doi.org/10.1007/s11051-013-2179-z.
- S. Abraham and V.P. Sarathy, Asian J. Chem., 28, 2435 (2016); https://doi.org/10.14233/ajchem.2016.20007.
References
R. Seigneuric, L. Markey, D. S.A. Nuyten, C. Dubernet, C.T.A. Evelo, E. Finot and C. Garrido, Curr. Mol. Med., 10, 640 (2010); https://doi.org/10.2174/156652410792630634.
M. Vinardell and M. Mitjans, Nanomaterials, 5, 1004 (2015); https://doi.org/10.3390/nano5021004.
M.S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao and C.H. Baker, Nanomedicine, 9, 558 (2013); https://doi.org/10.1016/j.nano.2012.10.010.
D. Schubert, R. Dargusch, J. Raitano and S.W. Chan, Biochem. Biophys. Res. Commun., 342, 86 (2006); https://doi.org/10.1016/j.bbrc.2006.01.129.
M. Pesic, A. Podolski-Renic, S. Stojkovic, B. Matovic, D. Zmejkoski, V. Kojic, G. Bogdanovic, A. Pavicevic, M. Mojovic, A. Savic, I. Milenkovic, A. Kalauzi and K. Radotic, Chem. Biol. Interact., 232, 85 (2015); https://doi.org/10.1016/j.cbi.2015.03.013.
L. Kong, X. Cai, X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal and J.F. McGinnis, Neurobiol. Dis., 42, 514 (2011); https://doi.org/10.1016/j.nbd.2011.03.004.
N. Pourkhalili, A. Hosseini, A. Nili-Ahmadabadi, S. Hassani, M. Pakzad, M. Baeeri, A. Mohammadirad and M. Abdollahi, World J. Diabetes, 2, 204 (2011); https://doi.org/10.4239/wjd.v2.i11.204.
J. Colon, N. Hsieh, A. Ferguson, P. Kupelian, S. Seal, D.W. Jenkins and C.H. Baker, Nanomedicine, 6, 698 (2010); https://doi.org/10.1016/j.nano.2010.01.010.
J. Chen, S. Patil, S. Seal and J.F. McGinnis, Nat. Nanotechnol., 1, 142 (2006); https://doi.org/10.1038/nnano.2006.91.
A.Y. Estevez and J.S. Erlichman, Nanomedicine, 9, 1437 (2014); https://doi.org/10.2217/nnm.14.87.
M. Li, P. Shi, C. Xu, J. Ren and X. Qu, Chem. Sci., 4, 2536 (2013); https://doi.org/10.1039/c3sc50697e.
Y. Gao, F. Gao, K. Chen and J. Ma, Onco Targets Ther., 7, 835 (2014); https://doi.org/10.2147/OTT.S62057.
M.S. Wason and J. Zhao, Am. J. Transl. Res., 5, 126 (2013).
S.H. Jung, S.J. Choi, H.J. Kim and T.W. Moon, Biosci. Biotechnol. Biochem., 70, 2064 (2006); https://doi.org/10.1271/bbb.60026.
L. Shang, Y.Z. Wang, J.G. Jiang and S. Dong, Langmuir, 23, 2714 (2007); https://doi.org/10.1021/la062064e.
C.D. Walkey and W.C. Chan, Chem. Soc. Rev., 41, 2780 (2012); https://doi.org/10.1039/C1CS15233E.
M.P. Monopoli, C. Aberg, A. Salvati and K.A. Dawson, Nat. Nano, 7, 779 (2012); https://doi.org/10.1038/nnano.2012.207.
C.C. Fleischer and C.K. Payne, J. Phys. Chem. B, 118, 14017 (2014); https://doi.org/10.1021/jp502624n.
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, edn 3, p. 277 (2006).
A.K. Bhunia, P.K. Samanta, S. Saha and T. Kamilya, Appl. Phys. Lett., 103, 143701 (2013); https://doi.org/10.1063/1.4824021.
A. Kathiravan and R. Renganathan, Colloids Surf. A, 324, 176 (2008); https://doi.org/10.1016/j.colsurfa.2008.04.017.
A. Kathiravan, R. Renganathan and S. Anandan, Polyhedron, 28, 157 (2009); https://doi.org/10.1016/j.poly.2008.09.023.
J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic Publishers, Dordrecht, edn 2 (1999).
G. Sekar, N.P. Kumar, A. Mukherjee and N. Chandrasekaran, Int. J. Biol. Macromol., 103, 1138 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.180.
X. Gao, Y. Tang, W. Rong, X. Zhang, W. Zhao and Y. Zi, Am. J. Anal. Chem., 2, 250 (2011); https://doi.org/10.4236/ajac.2011.22030.
S. Abraham, Asian J. Chem., 29, 821 (2017); https://doi.org/10.14233/ajchem.2017.20321.
A. Bhogale, N. Patel, P. Sarpotdar, J. Mariam, P.M. Dongre, A. Miotello and D.C. Kothari, Colloids Surf. B Biointerfaces, 102, 257 (2013); https://doi.org/10.1016/j.colsurfb.2012.08.023.
D.A. Kelkar, A. Chaudhuri, S. Haldar and A. Chattopadhyay, Eur. Biophys. J., 39, 1453 (2010); https://doi.org/10.1007/s00249-010-0603-1.
R. De-Llanos, S. Sanchez-Cortes, C. Domingo, J.V. Garcia-Ramos and P. Sevilla, J. Phys. Chem. C, 115, 12419 (2011); https://doi.org/10.1021/jp111683c.
J.S. Johansson, J. Biol. Chem., 272, 17961 (1997); https://doi.org/10.1074/jbc.272.29.17961.
A. Bhogale, N. Patel, J. Mariam, P.M. Dongre, A. Miotello and D.C. Kothari, Colloids Surf. B Biointerfaces, 113, 276 (2014); https://doi.org/10.1016/j.colsurfb.2013.09.021.
S.A.A. Latheef, G. Chakravarthy, D. Mallaiah and M. Ramanadham, J. Appl. Spectrosc., 83, 896 (2016); https://doi.org/10.1007/s10812-016-0381-3.
P. Esfandfar, M. Falahati and A.A. Saboury, J. Biomol. Struct. Dyn., 1096213, (2015); https://doi.org/10.1080/07391102.2015.1096213.
A. Kathiravan, G. Paramaguru and R. Renganathan, J. Mol. Struct., 934, 129 (2009); https://doi.org/10.1016/j.molstruc.2009.06.032.
D.M. Togashi, A.G. Ryder, D.M. Mahon, P. Dunne and J. McManus, Proc. of SPIE-OSA Biomed. Optics, 6628 (2007). https://doi.org/10.1364/ECBO.2007.6628_61.
X.Y. Gao and W. Wen, Wuli Huaxue Xuebao, 28, 417 (2012); https://doi.org/10.3866/PKU.WHXB201112051.
W. Liu, J. Rose, S. Plantevin, M. Auffan, J.-Y. Bottero and C. Vidaud, Nanoscale, 5, 1658 (2013); https://doi.org/10.1039/c2nr33611a.
S.N. Gajalakshmi, P. Kumar, A. Mukherjee and N. Chandrasekaran, J. Lumin., 161, 187 (2014); https://doi.org/10.1016/j.jlumin.2014.12.058.
S.Y.M. Jajroud, M. Falahati, F. Attar and R.A.K. Nejad, J. Biomol. Struct. Dyn., 9, (2017); https://doi.org/10.1080/07391102.2017.1371645.
D. Yuan, Z. Shen, R. Liu, Z. Chi and J. Zhu, J. Biochem. Mol. Toxicol., 25, 263 (2011); https://doi.org/10.1002/jbt.20385.
M. Maity, S.K. Pramanik, U. Pal, B. Banerji and N.C. Maiti, J. Nanopart. Res., 16, 2179 (2014); https://doi.org/10.1007/s11051-013-2179-z.
S. Abraham and V.P. Sarathy, Asian J. Chem., 28, 2435 (2016); https://doi.org/10.14233/ajchem.2016.20007.