Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Guar Gum Stabilized Copper Oxide Nanoparticles with Enhanced Thermal and Antimicrobial Properties
Corresponding Author(s) : S. Induja
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
The present investigation reports the synthesis and characterization of copper oxide nanofluids by one step chemical method using guar gum, a natural polymer as stabilizer. The samples were characterized using UV-visible spectroscopy and transmission emission microscopy. The thermo-physical properties such as thermal conductivity, viscosity were measured and antimicrobial activity was evaluated. The copper oxide nanofluids prepared under optimized conditions showed substantial increase in thermal conductivity (49.2 %) compared to the base fluids with relatively better stability and antimicrobial activity nearly equivalent to that of streptomycin (control sample).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Selvakumar and S. Suresh, J. Nanosci. Nanotechnol., 14, 2325 (2014); https://doi.org/10.1166/jnn.2014.8470.
- W. Chen, C. Zou, X. Li and L. Li, Int. J. Heat Mass Transfer, 107, 264 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.048.
- M.A. Serebryakova, A.V. Zaikovskii, S.Z. Sakhapov, D.V. Smovzh, G.I. Sukhinin and S.A. Novopashin, Int. J. Heat Mass Transfer, 108, 1314 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.098.
- H.S. Moghaieb, H.M. Abdel-Hamid, M.H. Shedid and A.B. Helali, Appl. Therm. Eng., 115, 152 (2017); https://doi.org/10.1016/j.applthermaleng.2016.12.099.
- C. Anushree and J. Philip, J. Mol. Liq., 222, 350 (2016); https://doi.org/10.1016/j.molliq.2016.07.051.
- E. Cohen and L. Glicksman, J. Heat Transfer, 136, 041301 (2014); https://doi.org/10.1115/1.4025921.
- H. Jahangirian, M.J. Haron, H.S.I. Mohd, R. Rafiee-Moghaddam, L. Afsah-Hejri, V. Abdollahi, M. Rezayi and N. Vafaei, Dig. J. Nanomater. Biostruct., 8, 1263 (2013).
- T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng, H. Li and D. Wang, Phys. Chem. Chem. Phys., 12, 15476 (2010); https://doi.org/10.1039/c0cp01228a.
- K.V. Ragavan and N.K. Rastogi, Sens. Actuators B, 229, 570 (2016); https://doi.org/10.1016/j.snb.2016.02.017.
- H. Zhu, D. Han, Z. Meng, D. Wu and C. Zhang, Nanoscale Res. Lett., 6, 181 (2011); https://doi.org/10.1186/1556-276X-6-181.
- T. Srinivas and A.V. Vinod, Procedia Eng., 127, 1271 (2015); https://doi.org/10.1016/j.proeng.2015.11.483.
- M.-S. Liu, M.C.-C. Lin, I.-T. Huang and C.-C. Wang, Chem. Eng. Technol., 29, 72 (2006); https://doi.org/10.1002/ceat.200500184.
- P. Selvakumar and S. Suresh, Exp. Therm. Fluid Sci., 40, 57 (2012); https://doi.org/10.1016/j.expthermflusci.2012.01.033.
- R. Manimaran, K. Palaniradja, N. Alagumurthi, S. Sendhilnathan and J. Hussain, App. Nanosci., 4, 163 (2014); https://doi.org/10.1007/s13204-012-0184-7.
- M. Sahooli, S. Sabbaghi and M.S. Niassar, Int. J. Nanosci. Nanotechnol., 8, 27 (2012).
References
P. Selvakumar and S. Suresh, J. Nanosci. Nanotechnol., 14, 2325 (2014); https://doi.org/10.1166/jnn.2014.8470.
W. Chen, C. Zou, X. Li and L. Li, Int. J. Heat Mass Transfer, 107, 264 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.048.
M.A. Serebryakova, A.V. Zaikovskii, S.Z. Sakhapov, D.V. Smovzh, G.I. Sukhinin and S.A. Novopashin, Int. J. Heat Mass Transfer, 108, 1314 (2017); https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.098.
H.S. Moghaieb, H.M. Abdel-Hamid, M.H. Shedid and A.B. Helali, Appl. Therm. Eng., 115, 152 (2017); https://doi.org/10.1016/j.applthermaleng.2016.12.099.
C. Anushree and J. Philip, J. Mol. Liq., 222, 350 (2016); https://doi.org/10.1016/j.molliq.2016.07.051.
E. Cohen and L. Glicksman, J. Heat Transfer, 136, 041301 (2014); https://doi.org/10.1115/1.4025921.
H. Jahangirian, M.J. Haron, H.S.I. Mohd, R. Rafiee-Moghaddam, L. Afsah-Hejri, V. Abdollahi, M. Rezayi and N. Vafaei, Dig. J. Nanomater. Biostruct., 8, 1263 (2013).
T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng, H. Li and D. Wang, Phys. Chem. Chem. Phys., 12, 15476 (2010); https://doi.org/10.1039/c0cp01228a.
K.V. Ragavan and N.K. Rastogi, Sens. Actuators B, 229, 570 (2016); https://doi.org/10.1016/j.snb.2016.02.017.
H. Zhu, D. Han, Z. Meng, D. Wu and C. Zhang, Nanoscale Res. Lett., 6, 181 (2011); https://doi.org/10.1186/1556-276X-6-181.
T. Srinivas and A.V. Vinod, Procedia Eng., 127, 1271 (2015); https://doi.org/10.1016/j.proeng.2015.11.483.
M.-S. Liu, M.C.-C. Lin, I.-T. Huang and C.-C. Wang, Chem. Eng. Technol., 29, 72 (2006); https://doi.org/10.1002/ceat.200500184.
P. Selvakumar and S. Suresh, Exp. Therm. Fluid Sci., 40, 57 (2012); https://doi.org/10.1016/j.expthermflusci.2012.01.033.
R. Manimaran, K. Palaniradja, N. Alagumurthi, S. Sendhilnathan and J. Hussain, App. Nanosci., 4, 163 (2014); https://doi.org/10.1007/s13204-012-0184-7.
M. Sahooli, S. Sabbaghi and M.S. Niassar, Int. J. Nanosci. Nanotechnol., 8, 27 (2012).