Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation of Morphotropic Phase Boundary by Rietveld Refinement and Raman Spectroscopy for (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics
Corresponding Author(s) : N. Echatoui
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
In this paper, the structural properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 ceramic system for (x = 0.00, 0.03, 0.05, 0.06, 0.07, 0.08 and 0.1) were studied. Moreover, the samples are obtained through the conventional solid-state method. The effect of calcination temperature ranging from 800 to 1000 ºC was investigated, using X-ray diffraction data and Rietveld refinement method, which permit to verify the morphotropic phase boundary at x = 0.05-0.07. The Raman spectral data were examined by inspecting the changes in their respective peak positions, full width at half maximum (FWHM) and intensities by increasing BaTiO3 composition. It was found that morphotropic phase boundary in the studied system resides at composition of x = 0.05. The analysis of both Rietveld refinement and Raman spectroscopy of the samples showed a distortion of Na0.5Bi0.5TiO3 lattice when Ba2+ ions were added, as well as the ceramic structures underwent a gradual distortion by increasing the composition fraction of BaTiO3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991); https://doi.org/10.1143/JJAP.30.2236.
- K. Reichmann, A. Feteira and M. Li, Materials, 8, 8467 (2015); https://doi.org/10.3390/ma8125469.
- G.O. Jones and P.A. Thomas, Acta Crystallogr. B, 58, 168 (2002); https://doi.org/10.1107/S0108768101020845.
- N.D. Scarisoreanu, R. Birjega, A. Andrei, M. Dinescu, F. Craciun and C. Galassi, ed.: A. Peláiz-Barranco, Phase Transitions, Dielectric and Ferroelectric Properties of Lead-free NBT-BT Thin Films, In: Advances in Ferroelectrics, InTech, Chap. 16 (2012).
- A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999); https://doi.org/10.1143/JJAP.38.5564.
- M.K. Niranjan, T. Karthik, S. Asthana, J. Pan and U.V. Waghmare, J. Appl. Phys., 113, 194106 (2013); https://doi.org/10.1063/1.4804940.
- J.A. Zvirgzds, P.P. Kapostin, J.V. Zvirgzde and T.V. Kruzina, Ferroelectrics, 40, 75 (1982); https://doi.org/10.1080/00150198208210600.
- G. Trolliard and V. Dorcet, Chem. Mater., 20, 5074 (2008); https://doi.org/10.1021/cm800464d.
- V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater., 20, 5061 (2008); https://doi.org/10.1021/cm8004634.
- S. Gorfman and P.A. Thomas, J. Appl. Cryst., 43, 1409 (2010); https://doi.org/10.1107/S002188981003342X.
- K.S. Rao, K.C.V. Rajulu, B. Tilak and A. Swathi, Nat. Sci., 2, 357 (2010).
- P. Marchet, E. Boucher, V. Dorcet and J.P. Mer-curio, J. Eur. Ceram. Soc., 26, 3037 (2006); https://doi.org/10.1016/j.jeurceramsoc.2006.02.024.
- J. Suchanicz and T.V. Kruzina, Mater. Sci. Eng. B, 178, 889 (2013); https://doi.org/10.1016/j.mseb.2013.04.011.
- Y. Sun, H. Liu, H. Hao, S. Zhang, L. Guo and Z. Yu, Ceram. Int., 38, S41 (2012); https://doi.org/10.1016/j.ceramint.2011.04.045.
- Q. Xu, S. Chen, W. Chen, S. Wu, J. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Compd., 381, 221 (2004); https://doi.org/10.1016/j.jallcom.2004.02.057.
- Q. Xu, S. Chen, W. Chen, S. Wu, J. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Compd., 381, 221 (2004); https://doi.org/10.1016/j.jallcom.2004.02.057.
- A.M. Glazer, Acta Crystallogr. B, 28, 3384 (1972); https://doi.org/10.1107/S0567740872007976.
- M. Ogino, Y. Noguchi, Y. Kitanaka, M. Miyayama, C. Moriyoshi and Y. Kuroiwa, Crystals, 4, 273 (2014); https://doi.org/10.3390/cryst4030273.
- E. Aksel, J.S. Forrester, J.L. Jones, P.A. Thomas, K. Page and M.R. Suchomel, Appl. Phys. Lett., 98, 152901 (2011); https://doi.org/10.1063/1.3573826.
- C. Xu, D. Lin and K.W. Kwok, Solid State Sci., 10, 934 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.11.003.
- R. Ranjan and A. Dviwedi, Solid State Commun., 135, 394 (2005); https://doi.org/10.1016/j.ssc.2005.03.053.
- X. Zhou, C. Jiang, H. Luo, C. Chen, K. Zhou and D. Zhang, Ceram. Int., 42, 18631 (2016); https://doi.org/10.1016/j.ceramint.2016.08.208.
- S. Sasikumar, R. Saravanan, S. Saravanakumar and K. Aravinth, J. Mater. Sci.: Mater. Electron., 29, 1198 (2018); https://doi.org/10.1007/s10854-017-8022-z.
- J.U. Rahman, A. Hussain, A. Maqbool, G.H. Ryu, T.K. Song, W.-J. Kim and M.H. Kim, J. Alloys Compd., 593, 97 (2014); https://doi.org/10.1016/j.jallcom.2014.01.031.
- A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah and I.W. Kim, Sens. Actuators Phys., 158, 84 (2010); https://doi.org/10.1016/j.sna.2009.12.027.
- S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang and Q.X. Liu, Scr. Mater., 61, 68 (2009); https://doi.org/10.1016/j.scriptamat.2009.03.016.
- H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969); https://doi.org/10.1107/S0021889869006558.
- Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao, Z. Yao, Z. He and H. Liu, J. Am. Ceram. Soc., 98, 3119 (2015); https://doi.org/10.1111/jace.13693.
- P.S. Silva, J.C.C.A. Diaz, O. Florêncio, M. Venet and J.C. M’Peko, Arch. Metall. Mater., 61, (2016); https://doi.org/10.1515/amm-2016-0008.
- K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, D.K. Aswal and A.K. Debnath, AIP Conf. Proc., 1313, 174 (2010); https://doi.org/10.1063/1.3530481.
- J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein and G.E. Kugel, J. Phys. Condens. Matter, 16, 2719 (2004); https://doi.org/10.1088/0953-8984/16/15/022.
- J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello and G. Lucazeau, J. Phys. Condens. Matter, 12, 3267 (2000); https://doi.org/10.1088/0953-8984/12/14/305.
- J. Suchanicz, I. Jankowska-Sumara and T.V. Kruzina, J. Electroceram., 27, 45 (2011); https://doi.org/10.1007/s10832-011-9648-5.
- H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti and H. Khemakhem, J. Alloys Compd., 618, 643 (2015); https://doi.org/10.1016/j.jallcom.2014.08.161.
- J. Petzelt, S. Kamba, J. Fábry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein and G.E. Kugel, J. Phys. Condens. Matter, 16, 2719 (2004); https://doi.org/10.1088/0953-8984/16/15/022.
- E. Buixaderas, S. Kamba, J. Petzelt, J. Drahokoupil, F. Laufek and M. Kosec, Appl. Phys. Lett., 91, 112909 (2007); https://doi.org/10.1063/1.2783962.
References
T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991); https://doi.org/10.1143/JJAP.30.2236.
K. Reichmann, A. Feteira and M. Li, Materials, 8, 8467 (2015); https://doi.org/10.3390/ma8125469.
G.O. Jones and P.A. Thomas, Acta Crystallogr. B, 58, 168 (2002); https://doi.org/10.1107/S0108768101020845.
N.D. Scarisoreanu, R. Birjega, A. Andrei, M. Dinescu, F. Craciun and C. Galassi, ed.: A. Peláiz-Barranco, Phase Transitions, Dielectric and Ferroelectric Properties of Lead-free NBT-BT Thin Films, In: Advances in Ferroelectrics, InTech, Chap. 16 (2012).
A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999); https://doi.org/10.1143/JJAP.38.5564.
M.K. Niranjan, T. Karthik, S. Asthana, J. Pan and U.V. Waghmare, J. Appl. Phys., 113, 194106 (2013); https://doi.org/10.1063/1.4804940.
J.A. Zvirgzds, P.P. Kapostin, J.V. Zvirgzde and T.V. Kruzina, Ferroelectrics, 40, 75 (1982); https://doi.org/10.1080/00150198208210600.
G. Trolliard and V. Dorcet, Chem. Mater., 20, 5074 (2008); https://doi.org/10.1021/cm800464d.
V. Dorcet, G. Trolliard and P. Boullay, Chem. Mater., 20, 5061 (2008); https://doi.org/10.1021/cm8004634.
S. Gorfman and P.A. Thomas, J. Appl. Cryst., 43, 1409 (2010); https://doi.org/10.1107/S002188981003342X.
K.S. Rao, K.C.V. Rajulu, B. Tilak and A. Swathi, Nat. Sci., 2, 357 (2010).
P. Marchet, E. Boucher, V. Dorcet and J.P. Mer-curio, J. Eur. Ceram. Soc., 26, 3037 (2006); https://doi.org/10.1016/j.jeurceramsoc.2006.02.024.
J. Suchanicz and T.V. Kruzina, Mater. Sci. Eng. B, 178, 889 (2013); https://doi.org/10.1016/j.mseb.2013.04.011.
Y. Sun, H. Liu, H. Hao, S. Zhang, L. Guo and Z. Yu, Ceram. Int., 38, S41 (2012); https://doi.org/10.1016/j.ceramint.2011.04.045.
Q. Xu, S. Chen, W. Chen, S. Wu, J. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Compd., 381, 221 (2004); https://doi.org/10.1016/j.jallcom.2004.02.057.
Q. Xu, S. Chen, W. Chen, S. Wu, J. Lee, J. Zhou, H. Sun and Y. Li, J. Alloys Compd., 381, 221 (2004); https://doi.org/10.1016/j.jallcom.2004.02.057.
A.M. Glazer, Acta Crystallogr. B, 28, 3384 (1972); https://doi.org/10.1107/S0567740872007976.
M. Ogino, Y. Noguchi, Y. Kitanaka, M. Miyayama, C. Moriyoshi and Y. Kuroiwa, Crystals, 4, 273 (2014); https://doi.org/10.3390/cryst4030273.
E. Aksel, J.S. Forrester, J.L. Jones, P.A. Thomas, K. Page and M.R. Suchomel, Appl. Phys. Lett., 98, 152901 (2011); https://doi.org/10.1063/1.3573826.
C. Xu, D. Lin and K.W. Kwok, Solid State Sci., 10, 934 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.11.003.
R. Ranjan and A. Dviwedi, Solid State Commun., 135, 394 (2005); https://doi.org/10.1016/j.ssc.2005.03.053.
X. Zhou, C. Jiang, H. Luo, C. Chen, K. Zhou and D. Zhang, Ceram. Int., 42, 18631 (2016); https://doi.org/10.1016/j.ceramint.2016.08.208.
S. Sasikumar, R. Saravanan, S. Saravanakumar and K. Aravinth, J. Mater. Sci.: Mater. Electron., 29, 1198 (2018); https://doi.org/10.1007/s10854-017-8022-z.
J.U. Rahman, A. Hussain, A. Maqbool, G.H. Ryu, T.K. Song, W.-J. Kim and M.H. Kim, J. Alloys Compd., 593, 97 (2014); https://doi.org/10.1016/j.jallcom.2014.01.031.
A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah and I.W. Kim, Sens. Actuators Phys., 158, 84 (2010); https://doi.org/10.1016/j.sna.2009.12.027.
S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang and Q.X. Liu, Scr. Mater., 61, 68 (2009); https://doi.org/10.1016/j.scriptamat.2009.03.016.
H.M. Rietveld, J. Appl. Cryst., 2, 65 (1969); https://doi.org/10.1107/S0021889869006558.
Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao, Z. Yao, Z. He and H. Liu, J. Am. Ceram. Soc., 98, 3119 (2015); https://doi.org/10.1111/jace.13693.
P.S. Silva, J.C.C.A. Diaz, O. Florêncio, M. Venet and J.C. M’Peko, Arch. Metall. Mater., 61, (2016); https://doi.org/10.1515/amm-2016-0008.
K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, D.K. Aswal and A.K. Debnath, AIP Conf. Proc., 1313, 174 (2010); https://doi.org/10.1063/1.3530481.
J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein and G.E. Kugel, J. Phys. Condens. Matter, 16, 2719 (2004); https://doi.org/10.1088/0953-8984/16/15/022.
J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello and G. Lucazeau, J. Phys. Condens. Matter, 12, 3267 (2000); https://doi.org/10.1088/0953-8984/12/14/305.
J. Suchanicz, I. Jankowska-Sumara and T.V. Kruzina, J. Electroceram., 27, 45 (2011); https://doi.org/10.1007/s10832-011-9648-5.
H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti and H. Khemakhem, J. Alloys Compd., 618, 643 (2015); https://doi.org/10.1016/j.jallcom.2014.08.161.
J. Petzelt, S. Kamba, J. Fábry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein and G.E. Kugel, J. Phys. Condens. Matter, 16, 2719 (2004); https://doi.org/10.1088/0953-8984/16/15/022.
E. Buixaderas, S. Kamba, J. Petzelt, J. Drahokoupil, F. Laufek and M. Kosec, Appl. Phys. Lett., 91, 112909 (2007); https://doi.org/10.1063/1.2783962.