Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Bath Temperature on Magnetic and Structural Properties of Electrodeposited NiFeCr Nano Crystalline Thin Films
Corresponding Author(s) : M. Kanakaraj
Asian Journal of Chemistry,
Vol. 30 No. 5 (2018): Vol 30 Issue 5, 2018
Abstract
Soft magnetic thin films of NiFeCr were prepared using electrodeposition in various bath temperature. NiFeCr deposited films are textured with FCC phase preferred orientation. Experimentally observed soft magnetic property of thin films for different temperature was compared.The addition of chromium can enhance magnetic and mechanical properties of NiFe thin films. Electrodeposited NiFeCr films were prepared at different temperature (30, 50, 70 and 90 °C) and they were subjected to morphological, structural, magnetic and mechanical characterization analysis. Nickel content was maximum as 51.36 wt % at 90 °C. The chromium content increased when electrolytic bath temperature was increased. NiFeCr films were bright and uniformly coated on the surface. Also the deposits of NiFeCr films were in nano scale and the average crystalline size was around 30 nm. Thin films prepared at high temperature exhibited a high saturation magnetization and low coercivity. The micro hardness of NiFeCr was 272 VHN at 90 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.V. Myung, D.Y. Park, B.Y. Yoo and P.T.A. Sumodjo, J. Magn. Magn. Mater., 265, 189 (2003); https://doi.org/10.1016/S0304-8853(03)00264-6.
- G.A. Di Bari, Modern Electroplating, John Wiley & Sons, Inc., edn 5, p. 79 (2000).
- K.Y. Kok, C.M. Hangarter, B. Goldsmith, I.K. Ng, N.B. Saidin and N.V. Myung, J. Magn. Magn. Mater., 322, 3876 (2010); https://doi.org/10.1016/j.jmmm.2010.08.012.
- G.V. Fernandez, P.J. Grundy and M.M. Vopson, J. Phys. Condens. Matter, 1, 6 (2013); https://doi.org/10.12966/jcmp.08.02.2013.
- M. Bedir, O.F. Bakkaloglu, I.H. Karahan and M. Oztas, Pramana, 66, 1093 (2006); https://doi.org/10.1007/BF02708462.
- N. Myung, Bull. Korean Chem. Soc., 22, 994 (2001).
- J. Singh, S.K. Gupta, A.K. Singh, P. Kothari, R.K. Kotnala and J. Akhtar, J. Magn. Magn. Mater., 324, 999 (2012); https://doi.org/10.1016/j.jmmm.2011.10.009.
- S. Esmaili, M.E. Bahrololoom and C. Zamani, Surf. Eng. Appl. Electrochem., 47, 107 (2011); https://doi.org/10.3103/S1068375511020049.
- R. Kannan, S. Ganesan and T.M. Selvakumari, Dig. J. Nanomater. Biostruct., 7, 1039 (2012).
- G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary and G. Ajay, J. Indian Pure Appl. Phys., 48, 287 (2010).
- N. Gupta, A. Verma, S.C. Kashyap and D.C. Dube, Solid State Commun., 134, 689 (2005); https://doi.org/10.1016/j.ssc.2005.02.037.
- N. Sulztanu and J. Fbrinza, J. Optoelectron. Adv. Mater., 6, 641 (2004).
- Chih-Huang Lai, H. Matsuyama, R.L. White and T.C. Anthony, IEEE Trans. Magn., 31, 2609 (1995); https://doi.org/10.1109/20.490068.
- R.N. Emerson, C.J. Kennady and S. Ganesan, Thin Solid Films, 515, 3391 (2007); https://doi.org/10.1016/j.tsf.2006.09.034.
- M. Ghorbani, A.G. Dolati and A. Afshar, Russ. J. Electrochem., 38, 1173 (2002); https://doi.org/10.1023/A:1021141524584.
- Y. Motomura, T. Tatsumi, H. Urai and M. Aoyama, IEEE Trans. Magn., 26, 2327 (1990); https://doi.org/10.1109/20.104714.
- R. Kannan, S. Ganesan and T.M. Selvakumari, Optoelectr. Adv. Mater. Rapid Commun., 6, 383 (2012).
- X.F. Meng, D.H. Li, X.Q. Shen and W. Liu, Appl. Surf. Sci., 256, 3753 (2010); https://doi.org/10.1016/j.apsusc.2010.01.019.
- P. Esther and C. Joseph Kennady, J. Non Oxide Glasses, 1, 35 (2010).
- Z. Abdel Hamid, Mater. Lett., 57, 2558 (2003); https://doi.org/10.1016/S0167-577X(02)01311-3.
References
N.V. Myung, D.Y. Park, B.Y. Yoo and P.T.A. Sumodjo, J. Magn. Magn. Mater., 265, 189 (2003); https://doi.org/10.1016/S0304-8853(03)00264-6.
G.A. Di Bari, Modern Electroplating, John Wiley & Sons, Inc., edn 5, p. 79 (2000).
K.Y. Kok, C.M. Hangarter, B. Goldsmith, I.K. Ng, N.B. Saidin and N.V. Myung, J. Magn. Magn. Mater., 322, 3876 (2010); https://doi.org/10.1016/j.jmmm.2010.08.012.
G.V. Fernandez, P.J. Grundy and M.M. Vopson, J. Phys. Condens. Matter, 1, 6 (2013); https://doi.org/10.12966/jcmp.08.02.2013.
M. Bedir, O.F. Bakkaloglu, I.H. Karahan and M. Oztas, Pramana, 66, 1093 (2006); https://doi.org/10.1007/BF02708462.
N. Myung, Bull. Korean Chem. Soc., 22, 994 (2001).
J. Singh, S.K. Gupta, A.K. Singh, P. Kothari, R.K. Kotnala and J. Akhtar, J. Magn. Magn. Mater., 324, 999 (2012); https://doi.org/10.1016/j.jmmm.2011.10.009.
S. Esmaili, M.E. Bahrololoom and C. Zamani, Surf. Eng. Appl. Electrochem., 47, 107 (2011); https://doi.org/10.3103/S1068375511020049.
R. Kannan, S. Ganesan and T.M. Selvakumari, Dig. J. Nanomater. Biostruct., 7, 1039 (2012).
G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Choudhary and G. Ajay, J. Indian Pure Appl. Phys., 48, 287 (2010).
N. Gupta, A. Verma, S.C. Kashyap and D.C. Dube, Solid State Commun., 134, 689 (2005); https://doi.org/10.1016/j.ssc.2005.02.037.
N. Sulztanu and J. Fbrinza, J. Optoelectron. Adv. Mater., 6, 641 (2004).
Chih-Huang Lai, H. Matsuyama, R.L. White and T.C. Anthony, IEEE Trans. Magn., 31, 2609 (1995); https://doi.org/10.1109/20.490068.
R.N. Emerson, C.J. Kennady and S. Ganesan, Thin Solid Films, 515, 3391 (2007); https://doi.org/10.1016/j.tsf.2006.09.034.
M. Ghorbani, A.G. Dolati and A. Afshar, Russ. J. Electrochem., 38, 1173 (2002); https://doi.org/10.1023/A:1021141524584.
Y. Motomura, T. Tatsumi, H. Urai and M. Aoyama, IEEE Trans. Magn., 26, 2327 (1990); https://doi.org/10.1109/20.104714.
R. Kannan, S. Ganesan and T.M. Selvakumari, Optoelectr. Adv. Mater. Rapid Commun., 6, 383 (2012).
X.F. Meng, D.H. Li, X.Q. Shen and W. Liu, Appl. Surf. Sci., 256, 3753 (2010); https://doi.org/10.1016/j.apsusc.2010.01.019.
P. Esther and C. Joseph Kennady, J. Non Oxide Glasses, 1, 35 (2010).
Z. Abdel Hamid, Mater. Lett., 57, 2558 (2003); https://doi.org/10.1016/S0167-577X(02)01311-3.