Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
An ONIOM Study of Catalytically Active Brønsted Acid Sites of ZSM-5
Corresponding Author(s) : P.S. Arun
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
Catalytic cracking process is specifically initiated on Brønsted acid site and the loss of strong Brønsted acid site is directly correlated with the loss of catalytic activity. In this context we first identified and established the activity of Brønsted acid sites in three-dimensional ZSM-5 by identifying the preferential occurrence of LUMO orbital at these sites. Critical lowering of HOMO-LUMO energy gap in carbon monoxide adsorbed ZSM-5 compared to free CO, revealed the cause for high activation of CO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Cha, N.C. Jeong, S. Song, H. Park, T.C. Thanh Pham, R. Harder, B. Lim, G. Xiong, D. Ahn, I. McNulty, J. Kim, K.B. Yoon, I.K. Robinson and H. Kim, Nat. Mater., 12, 729 (2013); https://doi.org/10.1038/nmat3698.
- C. Li, H. Wang, S.S. Zhu, G.B. Liu and J.H. Wu, J. Fuel Chem. Technol., 45, 1088 (2017); https://doi.org/10.1016/S1872-5813(17)30051-8.
- I.L.C. Buurmans, J. Ruiz-Martínez, W.V. Knowles, D. van der Beek, J.A. Bergwerff, E.T.C. Vogt and B.M. Weckhuysen, Nat. Chem., 3, 862 (2011); https://doi.org/10.1038/nchem.1148.
- A. Corma, Chem. Rev., 95, 559 (1995); https://doi.org/10.1021/cr00035a006.
- J. Van der Mynsbrugge, K. Hemelsoet, M. Vandichel, M. Waroquier and V. Van Speybroeck, J. Phys. Chem. C, 116, 5499 (2012); https://doi.org/10.1021/jp2123828.
- Y. Zhao and D.G. Truhlar, J. Phys. Chem. C, 112, 6860 (2008); https://doi.org/10.1021/jp7112363.
- W. Panjan, J. Sirijaraensre, C. Warakulwit, P. Pantu and J. Limtrakul, Phys. Chem. Chem. Phys., 14, 16588 (2012); https://doi.org/10.1039/c2cp42066j.
- S. Sakkiah and K.W. Lee, Acta Pharmacol. Sin., 33, 964 (2012); https://doi.org/10.1038/aps.2012.21.
- J.I. Aihara, Phys. Chem. Chem. Phys., 2, 3121 (2000); https://doi.org/10.1039/b002601h.
References
W. Cha, N.C. Jeong, S. Song, H. Park, T.C. Thanh Pham, R. Harder, B. Lim, G. Xiong, D. Ahn, I. McNulty, J. Kim, K.B. Yoon, I.K. Robinson and H. Kim, Nat. Mater., 12, 729 (2013); https://doi.org/10.1038/nmat3698.
C. Li, H. Wang, S.S. Zhu, G.B. Liu and J.H. Wu, J. Fuel Chem. Technol., 45, 1088 (2017); https://doi.org/10.1016/S1872-5813(17)30051-8.
I.L.C. Buurmans, J. Ruiz-Martínez, W.V. Knowles, D. van der Beek, J.A. Bergwerff, E.T.C. Vogt and B.M. Weckhuysen, Nat. Chem., 3, 862 (2011); https://doi.org/10.1038/nchem.1148.
A. Corma, Chem. Rev., 95, 559 (1995); https://doi.org/10.1021/cr00035a006.
J. Van der Mynsbrugge, K. Hemelsoet, M. Vandichel, M. Waroquier and V. Van Speybroeck, J. Phys. Chem. C, 116, 5499 (2012); https://doi.org/10.1021/jp2123828.
Y. Zhao and D.G. Truhlar, J. Phys. Chem. C, 112, 6860 (2008); https://doi.org/10.1021/jp7112363.
W. Panjan, J. Sirijaraensre, C. Warakulwit, P. Pantu and J. Limtrakul, Phys. Chem. Chem. Phys., 14, 16588 (2012); https://doi.org/10.1039/c2cp42066j.
S. Sakkiah and K.W. Lee, Acta Pharmacol. Sin., 33, 964 (2012); https://doi.org/10.1038/aps.2012.21.
J.I. Aihara, Phys. Chem. Chem. Phys., 2, 3121 (2000); https://doi.org/10.1039/b002601h.