Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mild and Efficient Enantioselective Synthesis of All Stereoisomers of Cordiarimide B and Their Antioxidant Study
Corresponding Author(s) : M.N. Kumara
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
Four isomers of cordiarimide B were synthesized by coupling (S)-2-amino-1-phenylethanol and (R)-2-amino-1-phenylethanol with L and D glutamic acid. Biological studies revealed that two isomers showed potent antioxidant activity. Among these two, the most promising isomer is compound (3S,11S) 18, possesses four folds more active than the (3S,11R) 20 isomer. The other two isomers (3R,11S) 22 and (3R,11R) 24 are biologically not active. Structure-activity relationship studies indicated that the stereochemistry of the hydroxyl (-OH) group at C-3 position of 2-amino-1-pheylehtnaol played a crucial role in modulating the antioxidant activity. This finding could help in rational designing of cordiarimide B as novel antioxidant drug molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.S. Barbosa, A.S. Abreu, E.F. Batista, G.M. Guilhon, A.H. Muller, M.S. Arruda, L.S. Santos, A.C. Arruda and R.S. Secco, Biochem. Syst. Ecol., 35, 887 (2007); https://doi.org/10.1016/j.bse.2007.04.006.
- R.O. Moreira, D.S. Brasil, C.N. Alves, G.M. Guilhon, L.S. Santos, M.S. Arruda, A.H. Müller, P.S. Barbosa, A.S. Abreu, E.O. Silva, V.M. Rumjanek, J. Souza, A.B.F. da Silva and R.H.A. Santos, Int. J. Quantum Chem., 108, 513 (2008); https://doi.org/10.1002/qua.21355.
- M. Kuroyanagi, T. Seki, T. Hayashi, Y. Nagashima, N. Kawahara, S. Sekita and M. Satake, Chem. Pharm. Bull., 49, 954 (2001); https://doi.org/10.1248/cpb.49.954.
- H.P. Kahn and J. Cossy, Tetrahedron Lett., 40, 8113 (1999); https://doi.org/10.1016/S0040-4039(99)01728-1.
- J.R. Ioset, A. Marston, M.P. Gupta and K. Hostettmann, J. Nat. Prod., 63, 424 (2000); https://doi.org/10.1021/np990393j.
- J.R. Ioset, A. Marston, M.P. Gupta and K. Hostettmann, Phytochemistry, 53, 613 (2000); https://doi.org/10.1016/S0031-9422(99)00604-4.
- G.M. Laycock and A. Shulman, Nature, 200, 849 (1963); https://doi.org/10.1038/200849a0.
- J. Parks, T. Gyeltshen, V. Prachyawarakorn, C. Mahidol, S. Ruchirawat and P. Kittakoop, J. Nat. Prod., 73, 992 (2010); https://doi.org/10.1021/np100078s.
- B. Teng, J. Zheng, H. Huang and P. Huang, Chin. J. Chem., 29, 1312 (2011); https://doi.org/10.1002/cjoc.201180248.
- Y.Q. Wang, S.M. Lu and Y.G. Zhou, Org. Lett., 7, 3235 (2005); https://doi.org/10.1021/ol051007u.
- Q.B. Li, H. Fang and W.F. Xu, Bioorg. Med. Chem. Lett., 17, 2935 (2007); https://doi.org/10.1016/j.bmcl.2006.12.095.
- Q.B. Li, H. Fang, X.J. Wang and W.F. Xu, Eur. J. Med. Chem., 45, 1618 (2010); https://doi.org/10.1016/j.ejmech.2009.12.071.
- F.A. Luzzio, A.V. Mayorov, S.S.W. Ng, E.A. Kruger and W.D. Figg, J. Med. Chem., 46, 3793 (2003); https://doi.org/10.1021/jm020079d.
- S.M. Capitosti, T.P. Hansen and M.L. Brown, Org. Lett., 5, 2865 (2003); https://doi.org/10.1021/ol034906w.
- S.B. Kedare and R.P. Singh, J. Food Sci. Technol., 48, 412 (2011); https://doi.org/10.1007/s13197-011-0251-1.
References
P.S. Barbosa, A.S. Abreu, E.F. Batista, G.M. Guilhon, A.H. Muller, M.S. Arruda, L.S. Santos, A.C. Arruda and R.S. Secco, Biochem. Syst. Ecol., 35, 887 (2007); https://doi.org/10.1016/j.bse.2007.04.006.
R.O. Moreira, D.S. Brasil, C.N. Alves, G.M. Guilhon, L.S. Santos, M.S. Arruda, A.H. Müller, P.S. Barbosa, A.S. Abreu, E.O. Silva, V.M. Rumjanek, J. Souza, A.B.F. da Silva and R.H.A. Santos, Int. J. Quantum Chem., 108, 513 (2008); https://doi.org/10.1002/qua.21355.
M. Kuroyanagi, T. Seki, T. Hayashi, Y. Nagashima, N. Kawahara, S. Sekita and M. Satake, Chem. Pharm. Bull., 49, 954 (2001); https://doi.org/10.1248/cpb.49.954.
H.P. Kahn and J. Cossy, Tetrahedron Lett., 40, 8113 (1999); https://doi.org/10.1016/S0040-4039(99)01728-1.
J.R. Ioset, A. Marston, M.P. Gupta and K. Hostettmann, J. Nat. Prod., 63, 424 (2000); https://doi.org/10.1021/np990393j.
J.R. Ioset, A. Marston, M.P. Gupta and K. Hostettmann, Phytochemistry, 53, 613 (2000); https://doi.org/10.1016/S0031-9422(99)00604-4.
G.M. Laycock and A. Shulman, Nature, 200, 849 (1963); https://doi.org/10.1038/200849a0.
J. Parks, T. Gyeltshen, V. Prachyawarakorn, C. Mahidol, S. Ruchirawat and P. Kittakoop, J. Nat. Prod., 73, 992 (2010); https://doi.org/10.1021/np100078s.
B. Teng, J. Zheng, H. Huang and P. Huang, Chin. J. Chem., 29, 1312 (2011); https://doi.org/10.1002/cjoc.201180248.
Y.Q. Wang, S.M. Lu and Y.G. Zhou, Org. Lett., 7, 3235 (2005); https://doi.org/10.1021/ol051007u.
Q.B. Li, H. Fang and W.F. Xu, Bioorg. Med. Chem. Lett., 17, 2935 (2007); https://doi.org/10.1016/j.bmcl.2006.12.095.
Q.B. Li, H. Fang, X.J. Wang and W.F. Xu, Eur. J. Med. Chem., 45, 1618 (2010); https://doi.org/10.1016/j.ejmech.2009.12.071.
F.A. Luzzio, A.V. Mayorov, S.S.W. Ng, E.A. Kruger and W.D. Figg, J. Med. Chem., 46, 3793 (2003); https://doi.org/10.1021/jm020079d.
S.M. Capitosti, T.P. Hansen and M.L. Brown, Org. Lett., 5, 2865 (2003); https://doi.org/10.1021/ol034906w.
S.B. Kedare and R.P. Singh, J. Food Sci. Technol., 48, 412 (2011); https://doi.org/10.1007/s13197-011-0251-1.