Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption Study of Lead(II) Ions on Poly(methyl methacrylate) Waste Material
Corresponding Author(s) : Ezekiel Dixon Dikio
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
The sorption of Pb2+ from solution by poly(methyl methacrylate) (PMMA) waste has been investigated. The morphological characterization of the collected PMMA polymer were studied by scanning electron microscopy. Equilibrium, kinetics and thermodynamic batch adsorption experiments of Pb2+ on the PMMA waste samples were carried out. This study enabled the determination of the concentration, time and temperature effects, respectively on the adsorption properties of the PMMA polymer. The morphological image of the PMMA polymer showed the presence of irregular small size particles that indicated a high surface which is therefore possible to facilitate sorption. The reaction kinetics of the adsorption studies of Pb2+ by the polymer followed a second-order rate process. The results indicated that the adsorbent, PMMA, proved to be an effective material for the treatment of lead contaminated water solution. The thermodynamic studies suggested a reaction that favoured a relatively low temperature (low energy) sorption that is exothermically controlled with a physisorption mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.M. Anthony, Polym. Degrad. Stab., 64, 353 (1999); https://doi.org/10.1016/S0141-3910(98)00129-3.
- E.M. Abdelrazek, A.M. Hezma, A. El-khodary and A.M. Elzayat, Egypt. J. Basic Appl. Sci., 3, 10 (2016); https://doi.org/10.1016/j.ejbas.2015.06.001.
- D. Wankasi, Ph.D. Thesis, Kinetics of Phytosorption of Heavy Metals using Unmodified and Modified Biomass Nipa palm (Nypa fruticans wurmb), University of Port Harcourt: Port Harcourt, Nigeria (2004).
- M. Horsfall, A.I. Spiff and A.A. Abia, Bull. Korean Chem. Soc., 25, 969 (2004); https://doi.org/10.5012/bkcs.2004.25.7.969.
- K.H. Chu and M.A. Hashim, Acta Biotechnol., 21, 295 (2001); https://doi.org/10.1002/1521-3846(200111)21:4<295::AIDABIO295>3.0.CO;2-F.
- J.L. Gardea-Torresdey, J.H. Gonzalez, K.J. Tiemann, O. Rodriguez and G. Gamez, J. Hazard. Mater., 57, 29 (1998); https://doi.org/10.1016/S0304-3894(97)00072-1.
- O.A. Tasie, Basic Plastic Materials and Technology, Owerri, Adyudo Press, Nigeria (2010).
- M. Kutz, Handbook of Material Selection, John Wiley & Sons, p. 341 (2002).
- T.J. Kaufmann, M.E. Jensen, G. Ford, L.L. Gill, W.F. Marx and D.F. Kallmes, Am. J. Neuroradiol., 23, 601 (2002).
- V.J.P. Poots, G. McKay and J.J. Healy, J. Water Pollut. Control Fed., 50, 926 (1978).
- D. Wankasi, M. Horsfall and A.I. Spiff, Chem. Tech. J., 4, 54 (2006)
- M. Suzuki, Adsorption Engineering, Elsevier, Amsterdam (1998).
- D. Wankasi, Adsorption: A Guide to Experimental Data Analysis, Ano Publication Company, Nigeria (2013).
- M. Djebara, J.P. Stoquert, M. Abdesselam, D. Muller and A.C. Chami, Nucl. Instrum. Methods B., 274, 70 (2012); https://doi.org/10.1016/j.nimb.2011.11.022.
- Y. Dwivedi, A.K. Singh, R. Prakash and S.B. Rai, J. Lumin., 131, 2451 (2011); https://doi.org/10.1016/j.jlumin.2011.05.063.
- R. Kumar, S.A. Ali, P. Singh, U. De, H.S. Virk and R. Prasad, Instrum. Methods B, 269, 1755 (2011); https://doi.org/10.1016/j.nimb.2010.12.025.
- K. Kadirvelu, C. Faur-Brasquet and P.L. Cloirec, Langmuir, 16, 8404 (2000); https://doi.org/10.1021/la0004810.
- K. Kadirvelu and C. Namasivayam, Environ. Technol., 21, 1091 (2000); https://doi.org/10.1080/09593330.2000.9618995.
- K.V. Kumar, J. Hazard. Mater., 137, 638 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.056.
- H. Tran, S.-J. You, A. Hosseini-Bandegharaei and H.-P. Chao, Water Res., 120, 88 (2017); https://doi.org/10.1016/j.watres.2017.04.014.
- M.S. Gaur, P.K. Singh, A.P. Indolia, P.K. Yadav, A.A. Rogachev and A.V. Rogachev, Ferroelectrics, 510, 56 (2017); https://doi.org/10.1080/00150193.2017.1327280.
- M. Khairy, N.H. Amin and R. Kamal, J. Therm. Anal. Calorim., 128, 1811 (2017); https://doi.org/10.1007/s10973-016-6062-x.
- S. Ramesh, K.H. Leen, K. Kumutha and A.K. Arof, Spectrochim. Acta A, 66, 1237 (2007); https://doi.org/10.1016/j.saa.2006.06.012.
- D. Wankasi, M. Horsfall Jnr. and A.I. Spiff, Afr. J. Biotechnol., 4, 923 (2005).
References
G.M. Anthony, Polym. Degrad. Stab., 64, 353 (1999); https://doi.org/10.1016/S0141-3910(98)00129-3.
E.M. Abdelrazek, A.M. Hezma, A. El-khodary and A.M. Elzayat, Egypt. J. Basic Appl. Sci., 3, 10 (2016); https://doi.org/10.1016/j.ejbas.2015.06.001.
D. Wankasi, Ph.D. Thesis, Kinetics of Phytosorption of Heavy Metals using Unmodified and Modified Biomass Nipa palm (Nypa fruticans wurmb), University of Port Harcourt: Port Harcourt, Nigeria (2004).
M. Horsfall, A.I. Spiff and A.A. Abia, Bull. Korean Chem. Soc., 25, 969 (2004); https://doi.org/10.5012/bkcs.2004.25.7.969.
K.H. Chu and M.A. Hashim, Acta Biotechnol., 21, 295 (2001); https://doi.org/10.1002/1521-3846(200111)21:4<295::AIDABIO295>3.0.CO;2-F.
J.L. Gardea-Torresdey, J.H. Gonzalez, K.J. Tiemann, O. Rodriguez and G. Gamez, J. Hazard. Mater., 57, 29 (1998); https://doi.org/10.1016/S0304-3894(97)00072-1.
O.A. Tasie, Basic Plastic Materials and Technology, Owerri, Adyudo Press, Nigeria (2010).
M. Kutz, Handbook of Material Selection, John Wiley & Sons, p. 341 (2002).
T.J. Kaufmann, M.E. Jensen, G. Ford, L.L. Gill, W.F. Marx and D.F. Kallmes, Am. J. Neuroradiol., 23, 601 (2002).
V.J.P. Poots, G. McKay and J.J. Healy, J. Water Pollut. Control Fed., 50, 926 (1978).
D. Wankasi, M. Horsfall and A.I. Spiff, Chem. Tech. J., 4, 54 (2006)
M. Suzuki, Adsorption Engineering, Elsevier, Amsterdam (1998).
D. Wankasi, Adsorption: A Guide to Experimental Data Analysis, Ano Publication Company, Nigeria (2013).
M. Djebara, J.P. Stoquert, M. Abdesselam, D. Muller and A.C. Chami, Nucl. Instrum. Methods B., 274, 70 (2012); https://doi.org/10.1016/j.nimb.2011.11.022.
Y. Dwivedi, A.K. Singh, R. Prakash and S.B. Rai, J. Lumin., 131, 2451 (2011); https://doi.org/10.1016/j.jlumin.2011.05.063.
R. Kumar, S.A. Ali, P. Singh, U. De, H.S. Virk and R. Prasad, Instrum. Methods B, 269, 1755 (2011); https://doi.org/10.1016/j.nimb.2010.12.025.
K. Kadirvelu, C. Faur-Brasquet and P.L. Cloirec, Langmuir, 16, 8404 (2000); https://doi.org/10.1021/la0004810.
K. Kadirvelu and C. Namasivayam, Environ. Technol., 21, 1091 (2000); https://doi.org/10.1080/09593330.2000.9618995.
K.V. Kumar, J. Hazard. Mater., 137, 638 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.056.
H. Tran, S.-J. You, A. Hosseini-Bandegharaei and H.-P. Chao, Water Res., 120, 88 (2017); https://doi.org/10.1016/j.watres.2017.04.014.
M.S. Gaur, P.K. Singh, A.P. Indolia, P.K. Yadav, A.A. Rogachev and A.V. Rogachev, Ferroelectrics, 510, 56 (2017); https://doi.org/10.1080/00150193.2017.1327280.
M. Khairy, N.H. Amin and R. Kamal, J. Therm. Anal. Calorim., 128, 1811 (2017); https://doi.org/10.1007/s10973-016-6062-x.
S. Ramesh, K.H. Leen, K. Kumutha and A.K. Arof, Spectrochim. Acta A, 66, 1237 (2007); https://doi.org/10.1016/j.saa.2006.06.012.
D. Wankasi, M. Horsfall Jnr. and A.I. Spiff, Afr. J. Biotechnol., 4, 923 (2005).