Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasound Mediated Modification and Characterization of Chitosan
Corresponding Author(s) : Pawan Kumar
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
Chemical modification of chitosan under sono-chemical conditions is carried out using citric acid as the crosslinking agent. The resultant cross-linked products are characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetric. It has been observed that the morphology and thermal stability of the cross-linked modified chitosan synthesized was dependent on the reaction temperature at which modification was done.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); https://doi.org/10.1016/j.ijpharm.2003.12.026.
- Y. Liu, X. Shen, H. Zhou, Y. Wang and L. Deng, Appl. Surf. Sci., 370, 270 (2016); https://doi.org/10.1016/j.apsusc.2016.02.124.
- L. Qin, H. Dong, Z. Mu, Y. Zhang and G. Dong, Carbohydr. Polym., 133, 236 (2015); https://doi.org/10.1016/j.carbpol.2015.06.099.
- X. Cheng, K. Ma, R. Li, X. Ren and T.S. Huang, Appl. Surf. Sci., 309, 138 (2014); https://doi.org/10.1016/j.apsusc.2014.04.206.
- S. Tang, B. Tian, Y.J. Guo, Z.A. Zhu and Y.P. Guo, Surf. Coat. Technol., 251, 210 (2014); https://doi.org/10.1016/j.surfcoat.2014.04.028.
- T.L. Yang and Y.C. Hsiao, Biomaterials, 66, 29 (2015); https://doi.org/10.1016/j.biomaterials.2015.06.028.
- Z. Li, H. Dou, Y. Fu and M. Qin, Carbohydr. Polym., 132, 430 (2015); https://doi.org/10.1016/j.carbpol.2015.06.062.
- R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme and V. Préat, eds.: R. Jayakumar, M. Prabaharan and R. Muzzarelli, Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, In: Chitosan for Biomaterials II. Advances in Polymer Science, Springer, Berlin, Heidelberg, vol. 244, pp. 19-44 (2011);
- S.A. Kumar, D. Vivek and A. Vandana, J. Pharma. Scient. Innov., 1, 11 (2012).
- M.K. Singh, S.K. Prajapati, A. Mahor, N. Rajput and R. Singh, Int. J. Pharm. Sci. Res., 2, 2266 (2005); https://doi.org/10.13040/IJPSR.0975-8232.2(9).2266-77.
- C. Qiao, X. Ma, J. Zhang and J. Yao, Food Chem., 235, 45 (2017); https://doi.org/10.1016/j.foodchem.2017.05.045.
- Y. Zhou, M. Fan, X. Luo, L. Huang and L. Chen, Carbohydr. Polym., 113, 108 (2014); https://doi.org/10.1016/j.carbpol.2014.06.081.
- A.B. Sieval, M. Thanou, A.F. Kotze, J.C. Verhoef, J. Brussee and H.E. Junginger, Carbohydr. Polym., 36, 157 (1998); https://doi.org/10.1016/S0144-8617(98)00009-5.
- N.M. Alves and J.F. Mano, Int. J. Biol. Macromol., 43, 401 (2008); https://doi.org/10.1016/j.ijbiomac.2008.09.007.
- K. Kumari and S. Virpal, Asian J. Chem., 25, 9817 (2013); https://doi.org/10.14233/ajchem.2013.15435.
- T. Kiang, J. Wen, H.W. Lim and K.W. Leong, Biomaterials, 25, 5293 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.036.
- C. KienzleSterzer, D. Rodriguez-Sanchez and C. Rha, J. Appl. Polym. Sci., 27, 4467 (1982); https://doi.org/10.1002/app.1982.070271133.
- W. Wang and D. Xu, Int. J. Biol. Macromol., 16, 149 (1994); https://doi.org/10.1016/0141-8130(94)90042-6.
- M. Mucha, Macromol. Chem. Phys., 198, 471 (1997); https://doi.org/10.1002/macp.1997.021980220.
- J. Berger, M. Reist, J.M. Mayer, O. Felt and R. Gurny, Eur. J. Pharm. Biopharm., 57, 35 (2004); https://doi.org/10.1016/S0939-6411(03)00160-7.
- J. Desbrieres, Biomacromolecules, 3, 342 (2002); https://doi.org/10.1021/bm010151+.
- A.V. Mironov, G.A. Vikhoreva, N.R. Kil’deeva and S.A. Uspenskii, Polym. Sci. Ser. B, 49, 15 (2007); https://doi.org/10.1134/S1560090407010046
References
V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal and S. Dhawan, Int. J. Pharm., 274, 1 (2004); https://doi.org/10.1016/j.ijpharm.2003.12.026.
Y. Liu, X. Shen, H. Zhou, Y. Wang and L. Deng, Appl. Surf. Sci., 370, 270 (2016); https://doi.org/10.1016/j.apsusc.2016.02.124.
L. Qin, H. Dong, Z. Mu, Y. Zhang and G. Dong, Carbohydr. Polym., 133, 236 (2015); https://doi.org/10.1016/j.carbpol.2015.06.099.
X. Cheng, K. Ma, R. Li, X. Ren and T.S. Huang, Appl. Surf. Sci., 309, 138 (2014); https://doi.org/10.1016/j.apsusc.2014.04.206.
S. Tang, B. Tian, Y.J. Guo, Z.A. Zhu and Y.P. Guo, Surf. Coat. Technol., 251, 210 (2014); https://doi.org/10.1016/j.surfcoat.2014.04.028.
T.L. Yang and Y.C. Hsiao, Biomaterials, 66, 29 (2015); https://doi.org/10.1016/j.biomaterials.2015.06.028.
Z. Li, H. Dou, Y. Fu and M. Qin, Carbohydr. Polym., 132, 430 (2015); https://doi.org/10.1016/j.carbpol.2015.06.062.
R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme and V. Préat, eds.: R. Jayakumar, M. Prabaharan and R. Muzzarelli, Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, In: Chitosan for Biomaterials II. Advances in Polymer Science, Springer, Berlin, Heidelberg, vol. 244, pp. 19-44 (2011);
S.A. Kumar, D. Vivek and A. Vandana, J. Pharma. Scient. Innov., 1, 11 (2012).
M.K. Singh, S.K. Prajapati, A. Mahor, N. Rajput and R. Singh, Int. J. Pharm. Sci. Res., 2, 2266 (2005); https://doi.org/10.13040/IJPSR.0975-8232.2(9).2266-77.
C. Qiao, X. Ma, J. Zhang and J. Yao, Food Chem., 235, 45 (2017); https://doi.org/10.1016/j.foodchem.2017.05.045.
Y. Zhou, M. Fan, X. Luo, L. Huang and L. Chen, Carbohydr. Polym., 113, 108 (2014); https://doi.org/10.1016/j.carbpol.2014.06.081.
A.B. Sieval, M. Thanou, A.F. Kotze, J.C. Verhoef, J. Brussee and H.E. Junginger, Carbohydr. Polym., 36, 157 (1998); https://doi.org/10.1016/S0144-8617(98)00009-5.
N.M. Alves and J.F. Mano, Int. J. Biol. Macromol., 43, 401 (2008); https://doi.org/10.1016/j.ijbiomac.2008.09.007.
K. Kumari and S. Virpal, Asian J. Chem., 25, 9817 (2013); https://doi.org/10.14233/ajchem.2013.15435.
T. Kiang, J. Wen, H.W. Lim and K.W. Leong, Biomaterials, 25, 5293 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.036.
C. KienzleSterzer, D. Rodriguez-Sanchez and C. Rha, J. Appl. Polym. Sci., 27, 4467 (1982); https://doi.org/10.1002/app.1982.070271133.
W. Wang and D. Xu, Int. J. Biol. Macromol., 16, 149 (1994); https://doi.org/10.1016/0141-8130(94)90042-6.
M. Mucha, Macromol. Chem. Phys., 198, 471 (1997); https://doi.org/10.1002/macp.1997.021980220.
J. Berger, M. Reist, J.M. Mayer, O. Felt and R. Gurny, Eur. J. Pharm. Biopharm., 57, 35 (2004); https://doi.org/10.1016/S0939-6411(03)00160-7.
J. Desbrieres, Biomacromolecules, 3, 342 (2002); https://doi.org/10.1021/bm010151+.
A.V. Mironov, G.A. Vikhoreva, N.R. Kil’deeva and S.A. Uspenskii, Polym. Sci. Ser. B, 49, 15 (2007); https://doi.org/10.1134/S1560090407010046