Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Antimicrobial and Cytoxic Activities of Copper(II) Isocynate Complex of Schiff Base
Corresponding Author(s) : M.S.N.A. Prasad
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
In this paper, Schiff base ligand using acetyl acetone, o-phenylenediamine and salicylaldehyde and its copper complex have been synthesized using self-assembly method. The ligand and its copper(II) complex were characterized by spectroscopic techniques. The antimicrobial studies are carried out for ligand and its copper complex, which confirmed that copper complex does not show any activity against bacteria as well as fungal organisms. However, the cytotoxic studies showed that copper complex has good anticancer activity against MCF-7 (breast cancer) cell line.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.D. Berdanier, J.L. Groff and S.S. Gropper, Advanced Nutrition and Human Metabolism, Wadsworth/Thomson Learning; Belmont, CA, USA, edn 3, p. 87 (1999).
- A.S. Brill, R.B. Martin and R.J.P. Williams, ed.: B. Pullman, Electronic Aspects of Biochemistry, Academic Press, New York (1964).
- E. Frieden, S. Osaki and S. Kobayashi, Gen. J. Physiol., 49, 213 (1965); https://doi.org/10.1085/jgp.49.1.213.
- J.A. Halfen, S. Mahapatra, E.C. Wilkinson, S. Kaderli, V.G. Young, L. Que, A.D. Zuberbuhler and W.B. Tolman, Science, 271, 1397 (1996); https://doi.org/10.1126/science.271.5254.1397.
- R.M.S. Pereira, N.E.D. Andrades, N. Paulino, A.C.H.F. Sawaya, M.N. Eberlin, M.C. Marcucci, G.M. Favero, E.M. Novak and S.P. Bydlowski, Molecules, 12, 1352 (2007); https://doi.org/10.3390/12071352.
- A. Skladanowski, M. Koba and J. Konopa, Biochem. Pharmacol., 61, 67 (2001); https://doi.org/10.1016/S0006-2952(00)00528-1.
- A.S. Gardberg, P.E. Doan, B.M. Hoffman and J.A. Ibers, Angew. Chem. Int. Ed. Engl., 40, 244 (2001); https://doi.org/10.1002/1521-3773(20010105)40:1<244::AID-ANIE244>3.0.CO;2-G.
- J.K. Swearingen and D.X. West, Transition Met. Chem., 26, 252 (2001); https://doi.org/10.1023/A:1007139022915.
- G. Wilkinson, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry, Elsevier, Oxford, vol. 2 (1987).
- M. Melnik, Coord. Chem. Rev., 42, 259 (1982); https://doi.org/10.1016/S0010-8545(00)80537-8.
- Z.W. Mao, M.Q. Chen, X.S.J. Tan, W.X. Liu and W.-X. Tang, Inorg. Chem., 34, 2889 (1995); https://doi.org/10.1021/ic00115a016.
- S.K. Mandal and K. Nag, J. Chem. Soc., Dalton Trans., 2141 (1984); https://doi.org/10.1039/dt9840002141.
- P.K. Coughlin and S.J. Lippard, J. Am. Chem. Soc., 103, 3228 (1981); https://doi.org/10.1021/ja00401a058.
- R.N. Patel, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 59, 713 (2003); https://doi.org/10.1016/S1386-1425(02)00217-2.
- R.R. Gagne, R.P. Kreh and D.J. Dodge, J. Am. Chem. Soc., 101, 6917 (1979); https://doi.org/10.1021/ja00517a022.
- E.I. Solomon, Pure Appl. Chem., 55, 1069 (1983); https://doi.org/10.1351/pac198355071069.
- R.N. Patel, N. Singh, K.K. Shukla, V.U.K. Gundla and U.K. Chauhan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 61, 2603 (2005); https://doi.org/10.1016/j.saa.2004.10.001.
- S.B. Kalia, K. Lumba, G. Kaushal and M. Sharma, Indian J. Chem., 46A, 1233 (2007).
- A. Kriza, V. Ababei, N. Cioatera, I. Rãu and N. Stãnicã, J. Serb. Chem. Soc., 75, 229 (2010); https://doi.org/10.2298/JSC1002229K.
- T.M. Bhagat, D.K. Swamy and M.N. Deshpande, J. Chem. Pharm. Res., 4, 100 (2012).
- B.N. Figgis and J. Lewis, Prog. Inorg. Chem., 6, 37 (1964);
- M.A. Neelakantan, F. Russalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar and M.S. Pillai, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008.
- A. Biswas, L.K. Das, M.G.B. Drew, C. Diaz and A. Ghosh, Inorg. Chem., 51, 10111 (2012); https://doi.org/10.1021/ic300319s.
- R.M. Atlas, Handbook of Microbiological Media, CRC Press, London (2004).
- J. Bonev, J. Hooper and J. Parisot, Antimic. Chemother., 61, 1295 (2008); https://doi.org/10.1093/jac/dkn090.
- T.R. Johnson and C.L. Case, Laboratory Experiment in Microbiology. edn 5 (1998).
References
C.D. Berdanier, J.L. Groff and S.S. Gropper, Advanced Nutrition and Human Metabolism, Wadsworth/Thomson Learning; Belmont, CA, USA, edn 3, p. 87 (1999).
A.S. Brill, R.B. Martin and R.J.P. Williams, ed.: B. Pullman, Electronic Aspects of Biochemistry, Academic Press, New York (1964).
E. Frieden, S. Osaki and S. Kobayashi, Gen. J. Physiol., 49, 213 (1965); https://doi.org/10.1085/jgp.49.1.213.
J.A. Halfen, S. Mahapatra, E.C. Wilkinson, S. Kaderli, V.G. Young, L. Que, A.D. Zuberbuhler and W.B. Tolman, Science, 271, 1397 (1996); https://doi.org/10.1126/science.271.5254.1397.
R.M.S. Pereira, N.E.D. Andrades, N. Paulino, A.C.H.F. Sawaya, M.N. Eberlin, M.C. Marcucci, G.M. Favero, E.M. Novak and S.P. Bydlowski, Molecules, 12, 1352 (2007); https://doi.org/10.3390/12071352.
A. Skladanowski, M. Koba and J. Konopa, Biochem. Pharmacol., 61, 67 (2001); https://doi.org/10.1016/S0006-2952(00)00528-1.
A.S. Gardberg, P.E. Doan, B.M. Hoffman and J.A. Ibers, Angew. Chem. Int. Ed. Engl., 40, 244 (2001); https://doi.org/10.1002/1521-3773(20010105)40:1<244::AID-ANIE244>3.0.CO;2-G.
J.K. Swearingen and D.X. West, Transition Met. Chem., 26, 252 (2001); https://doi.org/10.1023/A:1007139022915.
G. Wilkinson, R.D. Gillard and J.A. McCleverty, Comprehensive Coordination Chemistry, Elsevier, Oxford, vol. 2 (1987).
M. Melnik, Coord. Chem. Rev., 42, 259 (1982); https://doi.org/10.1016/S0010-8545(00)80537-8.
Z.W. Mao, M.Q. Chen, X.S.J. Tan, W.X. Liu and W.-X. Tang, Inorg. Chem., 34, 2889 (1995); https://doi.org/10.1021/ic00115a016.
S.K. Mandal and K. Nag, J. Chem. Soc., Dalton Trans., 2141 (1984); https://doi.org/10.1039/dt9840002141.
P.K. Coughlin and S.J. Lippard, J. Am. Chem. Soc., 103, 3228 (1981); https://doi.org/10.1021/ja00401a058.
R.N. Patel, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 59, 713 (2003); https://doi.org/10.1016/S1386-1425(02)00217-2.
R.R. Gagne, R.P. Kreh and D.J. Dodge, J. Am. Chem. Soc., 101, 6917 (1979); https://doi.org/10.1021/ja00517a022.
E.I. Solomon, Pure Appl. Chem., 55, 1069 (1983); https://doi.org/10.1351/pac198355071069.
R.N. Patel, N. Singh, K.K. Shukla, V.U.K. Gundla and U.K. Chauhan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 61, 2603 (2005); https://doi.org/10.1016/j.saa.2004.10.001.
S.B. Kalia, K. Lumba, G. Kaushal and M. Sharma, Indian J. Chem., 46A, 1233 (2007).
A. Kriza, V. Ababei, N. Cioatera, I. Rãu and N. Stãnicã, J. Serb. Chem. Soc., 75, 229 (2010); https://doi.org/10.2298/JSC1002229K.
T.M. Bhagat, D.K. Swamy and M.N. Deshpande, J. Chem. Pharm. Res., 4, 100 (2012).
B.N. Figgis and J. Lewis, Prog. Inorg. Chem., 6, 37 (1964);
M.A. Neelakantan, F. Russalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar and M.S. Pillai, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008.
A. Biswas, L.K. Das, M.G.B. Drew, C. Diaz and A. Ghosh, Inorg. Chem., 51, 10111 (2012); https://doi.org/10.1021/ic300319s.
R.M. Atlas, Handbook of Microbiological Media, CRC Press, London (2004).
J. Bonev, J. Hooper and J. Parisot, Antimic. Chemother., 61, 1295 (2008); https://doi.org/10.1093/jac/dkn090.
T.R. Johnson and C.L. Case, Laboratory Experiment in Microbiology. edn 5 (1998).