Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Supercritical Carbon Dioxide as Greener Solvent of 21st Century
Corresponding Author(s) : V.K. Madan
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
“Green” or “Sustainable” chemistry is mainly concerned with development of “greener” solvents that have comparatively less negative impact on human health and environment. Many of the commonly used solvents in chemical and pharmaceutical industries are flammable, toxic and emit out volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) which cause serious environmental, health and safety concerns. Now-a-days supercritical carbon dioxide (Sc-CO2) is receiving more and more attention as reaction media in scientific and industrial fraternity due to versatile possibilities of it as an eco-friendly, efficient, alternate and attractive solvent for today and tomorrow chemical processes. Supercritical carbon dioxide has liquid- like densities and solvent strength, which can be “tuned” by altering the pressure in reactor. So the present review article focuses on the applications and advantages of Sc-CO2. Applications of it range from extraction, particle formation, chemical reactions, polymerization and soil treatment to dyeing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York (1998).
- B. Subramaniam and M.A. McHugh, Ind. Eng. Chem. Process Des. Dev., 25, 1 (1986); https://doi.org/10.1021/i200032a001.
- A. Baiker, Chem. Rev., 99, 453 (1999); https://doi.org/10.1021/cr970090z.
- E. Sahle-Demessie, V.G. Devulapelli and A.A. Hassan, Catalysts, 2, 85 (2012); https://doi.org/10.3390/catal2010085.
- Y. Chen, Y. Wu, Y. Zhang, L. Long, L. Tao, M. Yang and M. Tang, J. Mol. Catal. Chem., 352, 102 (2012); https://doi.org/10.1016/j.molcata.2011.10.020.
- T. Sako, T. Sugeta, N. Nakazawa, T. Okubo, M. Sato, T. Taguchi and T. Hiaki, J. Chem. Eng. of Jpn, 24, 449 (1991); https://doi.org/10.1252/jcej.24.449.
- G.J. Suppes, R.N. Occhiogrosso and M.A. McHugh, Ind. Eng. Chem. Res., 28, 1152 (1989); https://doi.org/10.1021/ie00092a006.
- E.M. Glebov, L.G. Krishtopa, V. Stepanov and L.N. Krasnoperov, J. Phys. Chem. A, 105, 9427 (2001); https://doi.org/10.1021/jp011548a.
- C. Perre, eds.: G. Brunner and M. Perrut, Neutralization and Strengthening of Papers with Supercritical CO2, In: Proceedings of the 3rd International Symposium on Supercritical Fluids, vol. 2 (1994).
- S.V. Gangal, Encyclopedia of Polymer Science and Engineering, WileyInterscience, New York, p. 577 (1988).
- D.J. Van Bramer, M.B. Shiflett and A. Yokozeki, Safe Handling of Tetrafluoroethylene, US Patent 5345013 (1994).
- J.L. Kendall, D.A. Canelas, J.L. Young and J.M. DeSimone, Chem. Rev., 99, 543 (1999); https://doi.org/10.1021/cr9700336.
- R. Foster, R. Carr, F. Pasutto and J. Longstreth, J. Pharm. Biomed. Anal., 13, 1243 (1995); https://doi.org/10.1016/0731-7085(95)01560-8.
- E.D. Morgan, Supercritical Fluid Extraction, In: Natural Products, vol. III, Academic Press (2000).
- M. Maftouh, C. Granier-Loyaux, E. Chavana, J. Marini, A. Pradines, Y.V. Heyden and C. Picard, J. Chromatogr. A, 1088, 67 (2005); https://doi.org/10.1016/j.chroma.2004.12.038.
- M.D.A. Saldaña, R.S. Mohamed, M.G. Baer and P. Mazzafera, J. Agric. Food Chem., 47, 3804 (1999); https://doi.org/10.1021/jf981369z.
- R.S. Mohamed, G.B.M. Neves and T.G. Kieckbusch, Int. J. Food Sci. Technol., 33, 445 (1998); https://doi.org/10.1046/j.1365-2621.1998.00195.x.
- S.B. Hawthorne and D.J. Miller, J. Chromatogr. Sci., 24, 258 (1986); https://doi.org/10.1093/chromsci/24.6.258.
- B.W. Wright, C.W. Wright, R.W. Gale and R.D. Smith, Anal. Chem., 59, 38 (1987); https://doi.org/10.1021/ac00128a008.
- F.E. Deswarte, J.H. Clark, J.J. Hardy and P.M. Rose, Green Chem., 8, 39 (2006); https://doi.org/10.1039/B514978A.
- K.E. Laintz, C.M. Wai, C.R. Yonker and R.D. Smith, Anal. Chem., 64, 2875 (1992); https://doi.org/10.1021/ac00046a039.
- Y. Lin, R.D. Brauer, K.E. Laintz and C.M. Wai, Anal. Chem., 65, 2549 (1993); https://doi.org/10.1021/ac00066a027.
- S. Iso, S. Uno, Y. Meguro, T. Sasaki and Z. Yoshida, Prog. Nucl. Energy, 37, 423 (2000); https://doi.org/10.1016/S0149-1970(00)00082-2.
- T.I. Trofimov, M.D. Samsonov, Y.M. Kulyako and B.F. Myasoedov, C.R. Chim., 7, 1209 (2004); https://doi.org/10.1016/j.crci.2004.04.010.
- N. Blagden, M. De Matas, P. Gavan and P. York, Adv. Drug Deliv. Rev., 59, 617 (2007); https://doi.org/10.1016/j.addr.2007.05.011.
- J. Fages, H. Lochard, J.J. Letourneau, M. Sauceau and E. Rodier, Powder Technol., 141, 219 (2004); https://doi.org/10.1016/j.powtec.2004.02.007.
- K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni and W.E. Rudzinski, J. Control. Release, 70, 1 (2001); https://doi.org/10.1016/S0168-3659(00)00339-4.
- P. York, Pharm. Sci. Technol. Today, 2, 430 (1999); https://doi.org/10.1016/S1461-5347(99)00209-6.
- E. Reverchon, G.D. Porta, I. De Rosa, P. Subra and D. Letourneur, J. Supercrit. Fluids, 18, 239 (2000); https://doi.org/10.1016/S0896-8446(00)00069-3.
- A.K. Dillow, F. Dehghani, J.S. Hrkach, N.R. Foster and R. Langer, Proc. Natl. Acad. Sci. USA, 96, 10344 (1999); https://doi.org/10.1073/pnas.96.18.10344.
- S.K. Liao and P.S. Chang, Am. J. Anal. Chem., 3, 923 (2012); https://doi.org/10.4236/ajac.2012.312A122.
- J. Peach and J. Eastoe, Beilstein J. Org. Chem., 10, 1878 (2014); https://doi.org/10.3762/bjoc.10.196.
References
P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York (1998).
B. Subramaniam and M.A. McHugh, Ind. Eng. Chem. Process Des. Dev., 25, 1 (1986); https://doi.org/10.1021/i200032a001.
A. Baiker, Chem. Rev., 99, 453 (1999); https://doi.org/10.1021/cr970090z.
E. Sahle-Demessie, V.G. Devulapelli and A.A. Hassan, Catalysts, 2, 85 (2012); https://doi.org/10.3390/catal2010085.
Y. Chen, Y. Wu, Y. Zhang, L. Long, L. Tao, M. Yang and M. Tang, J. Mol. Catal. Chem., 352, 102 (2012); https://doi.org/10.1016/j.molcata.2011.10.020.
T. Sako, T. Sugeta, N. Nakazawa, T. Okubo, M. Sato, T. Taguchi and T. Hiaki, J. Chem. Eng. of Jpn, 24, 449 (1991); https://doi.org/10.1252/jcej.24.449.
G.J. Suppes, R.N. Occhiogrosso and M.A. McHugh, Ind. Eng. Chem. Res., 28, 1152 (1989); https://doi.org/10.1021/ie00092a006.
E.M. Glebov, L.G. Krishtopa, V. Stepanov and L.N. Krasnoperov, J. Phys. Chem. A, 105, 9427 (2001); https://doi.org/10.1021/jp011548a.
C. Perre, eds.: G. Brunner and M. Perrut, Neutralization and Strengthening of Papers with Supercritical CO2, In: Proceedings of the 3rd International Symposium on Supercritical Fluids, vol. 2 (1994).
S.V. Gangal, Encyclopedia of Polymer Science and Engineering, WileyInterscience, New York, p. 577 (1988).
D.J. Van Bramer, M.B. Shiflett and A. Yokozeki, Safe Handling of Tetrafluoroethylene, US Patent 5345013 (1994).
J.L. Kendall, D.A. Canelas, J.L. Young and J.M. DeSimone, Chem. Rev., 99, 543 (1999); https://doi.org/10.1021/cr9700336.
R. Foster, R. Carr, F. Pasutto and J. Longstreth, J. Pharm. Biomed. Anal., 13, 1243 (1995); https://doi.org/10.1016/0731-7085(95)01560-8.
E.D. Morgan, Supercritical Fluid Extraction, In: Natural Products, vol. III, Academic Press (2000).
M. Maftouh, C. Granier-Loyaux, E. Chavana, J. Marini, A. Pradines, Y.V. Heyden and C. Picard, J. Chromatogr. A, 1088, 67 (2005); https://doi.org/10.1016/j.chroma.2004.12.038.
M.D.A. Saldaña, R.S. Mohamed, M.G. Baer and P. Mazzafera, J. Agric. Food Chem., 47, 3804 (1999); https://doi.org/10.1021/jf981369z.
R.S. Mohamed, G.B.M. Neves and T.G. Kieckbusch, Int. J. Food Sci. Technol., 33, 445 (1998); https://doi.org/10.1046/j.1365-2621.1998.00195.x.
S.B. Hawthorne and D.J. Miller, J. Chromatogr. Sci., 24, 258 (1986); https://doi.org/10.1093/chromsci/24.6.258.
B.W. Wright, C.W. Wright, R.W. Gale and R.D. Smith, Anal. Chem., 59, 38 (1987); https://doi.org/10.1021/ac00128a008.
F.E. Deswarte, J.H. Clark, J.J. Hardy and P.M. Rose, Green Chem., 8, 39 (2006); https://doi.org/10.1039/B514978A.
K.E. Laintz, C.M. Wai, C.R. Yonker and R.D. Smith, Anal. Chem., 64, 2875 (1992); https://doi.org/10.1021/ac00046a039.
Y. Lin, R.D. Brauer, K.E. Laintz and C.M. Wai, Anal. Chem., 65, 2549 (1993); https://doi.org/10.1021/ac00066a027.
S. Iso, S. Uno, Y. Meguro, T. Sasaki and Z. Yoshida, Prog. Nucl. Energy, 37, 423 (2000); https://doi.org/10.1016/S0149-1970(00)00082-2.
T.I. Trofimov, M.D. Samsonov, Y.M. Kulyako and B.F. Myasoedov, C.R. Chim., 7, 1209 (2004); https://doi.org/10.1016/j.crci.2004.04.010.
N. Blagden, M. De Matas, P. Gavan and P. York, Adv. Drug Deliv. Rev., 59, 617 (2007); https://doi.org/10.1016/j.addr.2007.05.011.
J. Fages, H. Lochard, J.J. Letourneau, M. Sauceau and E. Rodier, Powder Technol., 141, 219 (2004); https://doi.org/10.1016/j.powtec.2004.02.007.
K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni and W.E. Rudzinski, J. Control. Release, 70, 1 (2001); https://doi.org/10.1016/S0168-3659(00)00339-4.
P. York, Pharm. Sci. Technol. Today, 2, 430 (1999); https://doi.org/10.1016/S1461-5347(99)00209-6.
E. Reverchon, G.D. Porta, I. De Rosa, P. Subra and D. Letourneur, J. Supercrit. Fluids, 18, 239 (2000); https://doi.org/10.1016/S0896-8446(00)00069-3.
A.K. Dillow, F. Dehghani, J.S. Hrkach, N.R. Foster and R. Langer, Proc. Natl. Acad. Sci. USA, 96, 10344 (1999); https://doi.org/10.1073/pnas.96.18.10344.
S.K. Liao and P.S. Chang, Am. J. Anal. Chem., 3, 923 (2012); https://doi.org/10.4236/ajac.2012.312A122.
J. Peach and J. Eastoe, Beilstein J. Org. Chem., 10, 1878 (2014); https://doi.org/10.3762/bjoc.10.196.