Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Comparative Photocatalytic Activity of LiNbO3 and TiO2 by Investigating the Removal Efficiency of Toluene from Indoor Air
Corresponding Author(s) : Ranjit K. Nath
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
The quality of the indoor environment has become a major health consideration, because air pollution can be several times higher than outdoors. Photocatalytic materials can remove air borne contaminants like, volatile organic compounds (VOCs) that may toxic and harmful for human health. In this study, lithium niobate (LiNbO3) and titanium dioxide (TiO2) were used as catalyst to compare their efficiencies in degradation and absorption of toluene. Toluene was used as a model of volatile organic compound that can be found in indoor environment. Experiments were conducted in a photocatalytic test reactor, utilizing concrete blocks coated with LiNbO3 and TiO2 under UV light. Different concentrations of toluene were loaded and passed through the photocatalytic reactor and the removal efficiency of volatile organic compound was determined by GC-FID and GC-MS multi-analyzer. The findings demonstrate the stronger adsorption capacity and higher photodegradation efficiency can be achieved by LiNbO3 more than TiO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Marco and D. Schaffer, Concr. Int., 31, 49 (2009).
- O. Geiss, C. Cacho, J. Barrero-Moreno and D. Kotzias, Build. Environ., 48, 107 (2012); https://doi.org/10.1016/j.buildenv.2011.08.021.
- C.Y.H. Chao, Build. Environ., 36, 999 (2001); https://doi.org/10.1016/S0360-1323(00)00057-3.
- R.K. Nath, M.F.M. Zain and M. Jamil, Renew. Sustain. Energy Rev., 62, 1184 (2016); https://doi.org/10.1016/j.rser.2016.05.018.
- A.P. Jones, Soc. Sci. Med., 47, 755 (1998); https://doi.org/10.1016/S0277-9536(98)00151-8.
- K. Kovler and N. Roussel, Cement Concr. Res., 41, 775 (2011); https://doi.org/10.1016/j.cemconres.2011.03.009.
- R.L. Laumbach, Sick Building Syndrome, In: International Encyclopedia of Public Health, pp. 4-8 (2008).
- J.M. Seltzer, Occupational Medicine: Effects of the Indoor Environment on Health, Hanley & Belfus: Philadelphia, vol. 10, p. 26 (1995).
- H.I. Zeliger, Sick Building Syndrome, In: Human Toxicology of Chemical Mixture, edn 2, pp. 143-158 (2011).
- S. Tomaziè, V. Logar, Z. Kristl, A. Krainer, I. Skrjanc and M. Kosir, Build. Environ., 70, 60 (2013); https://doi.org/10.1016/j.buildenv.2013.08.026.
- A. Mills and S. Le Hunte, J. Photochem. Photobiol. Chem., 108, 1 (1997); https://doi.org/10.1016/S1010-6030(97)00118-4.
- T. Noguchi, A. Fujishima, P. Sawunyama and K. Hashimoto, Environ. Sci. Technol., 32, 3831 (1998); https://doi.org/10.1021/es980299+.
- E. Obuchi, T. Sakamoto, K. Nakano and F. Shiraishi, Chem. Eng. Sci., 54, 1525 (1999); https://doi.org/10.1016/S0009-2509(99)00067-6.
- J.C. Yu, J. Yu, W. Ho and J. Zhao, J. Photochem. Photobiol. Chem., 148, 331 (2002); https://doi.org/10.1016/S1010-6030(02)00060-6.
- R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, The Scientific World J., Article ID 686497 (2013); https://doi.org/10.1155/2013/686497.
- Y. Zhang, R. Yang and R. Zhao, Atmos. Environ. Int., 37, 3395 (2003); https://doi.org/10.1016/S1352-2310(03)00357-1.
- E. Palomares, A. Uzcátegui, C. Franch and A. Corma, Appl. Catal. B, 142–143, 795 (2013); https://doi.org/10.1016/j.apcatb.2013.06.015.
- J. Chen and C. Poon, Environ. Sci. Technol., 43, 8948 (2009); https://doi.org/10.1021/es902359s.
- C. Akly, P.A. Chadik and D.W. Mazyck, Appl. Catal. B, 99, 329 (2010); https://doi.org/10.1016/j.apcatb.2010.07.002.
- K. Demeestere, J. Dewulf, B. De Witte, A. Beeldens and H. Van Langenhove, Build. Environ., 43, 406 (2008); https://doi.org/10.1016/j.buildenv.2007.01.016.
- D. Farhanian and F. Haghighat, Build. Environ., 72, 34 (2014); https://doi.org/10.1016/j.buildenv.2013.10.014.
- A. Fujishima and X.T. Zhang, C.R. Chim., 9, 750 (2006); https://doi.org/10.1016/j.crci.2005.02.055.
- R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, Adv. Nat. Appl. Sci., 6, 1030 (2012).
- G.L. Guerrini, Constr. Build. Mater., 27, 165 (2012); https://doi.org/10.1016/j.conbuildmat.2011.07.065.
- M. Safari, M. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A. Nakhli and R. Aminzadeh, Iran. J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1.
- W.W. Nazaroff, Indoor Air, 23, 353 (2013); https://doi.org/10.1111/ina.12062.
- M. Stock and S. Dunn, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1988 (2011); https://doi.org/10.1109/TUFFC.2011.2042.
- R.K. Nath, M.F.M. Zain, A.A.H. Kadhum and A.B.M.A. Kaish, Constr. Build. Mater., 54, 348 (2014); https://doi.org/10.1016/j.conbuildmat.2013.12.072.
- S.B. Kim and S.C. Hong, Appl. Catal. B, 35, 305 (2002); https://doi.org/10.1016/S0926-3373(01)00274-0.
- Y. Ku, C. Ma and Y.S. Shen, Appl. Catal. B, 34, 181 (2001); https://doi.org/10.1016/S0926-3373(01)00216-8.
- J. Zhao and X. Yang, Build. Environ., 38, 645 (2003); https://doi.org/10.1016/S0360-1323(02)00212-3.
- Y. Zhang, R. Yang, Q. Xu and J. Mo, J. Air Waste Manage. Assoc., 57, 94 (2007); https://doi.org/10.1080/10473289.2007.10465302.
- P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler and C. Gaysse, Catal. Today, 63, 363 (2000); https://doi.org/10.1016/S0920-5861(00)00480-6.
- A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani and L. Palmisano, Catal. Today, 75, 87 (2002); https://doi.org/10.1016/S0920-5861(02)00048-2.
- C. Yu, Deactivation and Regeneration of Environmentally Exposed Titanium Dioxide (TO2) based Products, Edited by E183413 DORN. Hong Kong: Testing Report for Environmental Protection Department, HKSAR (2003).
- C.S. Chuang, M.K. Wang, C.H. Ko, C.C. Ou and C.H. Wu, Bioresour. Technol., 99, 954 (2008); https://doi.org/10.1016/j.biortech.2007.03.003.
- T. Sano, N. Negishi, K. Takeuchi and S. Matsuzawa, Sol. Energy, 77, 543 (2004); https://doi.org/10.1016/j.solener.2004.03.018.
- J.H. Wang and M.B. Ray, Sep. Purif. Technol., 19, 11 (2000); https://doi.org/10.1016/S1383-5866(99)00078-7.
- M. Hinojosa-Reyes, V. Rodríguez-González and S. Arriaga, J. Hazard. Mater., 209-210, 365 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.035.
- R.M. Alberici and W.F. Jardim, Appl. Catal. B, 14, 55 (1997); https://doi.org/10.1016/S0926-3373(97)00012-X.
- H.K. Dong, H.C. Dong, S.Y. Myoung and W.K. Kwang, J. Adhes. Sci. Technol., 27, 683 (2013); https://doi.org/10.1080/01694243.2012.690661.
- A. Bouzaza and A. Laplanche, J. Photochem. Photobiol. Chem., 150, 207 (2002); https://doi.org/10.1016/S1010-6030(02)00088-6.
- N. Sobana and M. Swaminathan, Sol. Energy Mater. Sol. Cells, 91, 727 (2007); https://doi.org/10.1016/j.solmat.2006.12.013.
- R.K. Nath and M.F.M. Zain, Adv. Environ. Biol., 9, 1 (2015).
References
B. Marco and D. Schaffer, Concr. Int., 31, 49 (2009).
O. Geiss, C. Cacho, J. Barrero-Moreno and D. Kotzias, Build. Environ., 48, 107 (2012); https://doi.org/10.1016/j.buildenv.2011.08.021.
C.Y.H. Chao, Build. Environ., 36, 999 (2001); https://doi.org/10.1016/S0360-1323(00)00057-3.
R.K. Nath, M.F.M. Zain and M. Jamil, Renew. Sustain. Energy Rev., 62, 1184 (2016); https://doi.org/10.1016/j.rser.2016.05.018.
A.P. Jones, Soc. Sci. Med., 47, 755 (1998); https://doi.org/10.1016/S0277-9536(98)00151-8.
K. Kovler and N. Roussel, Cement Concr. Res., 41, 775 (2011); https://doi.org/10.1016/j.cemconres.2011.03.009.
R.L. Laumbach, Sick Building Syndrome, In: International Encyclopedia of Public Health, pp. 4-8 (2008).
J.M. Seltzer, Occupational Medicine: Effects of the Indoor Environment on Health, Hanley & Belfus: Philadelphia, vol. 10, p. 26 (1995).
H.I. Zeliger, Sick Building Syndrome, In: Human Toxicology of Chemical Mixture, edn 2, pp. 143-158 (2011).
S. Tomaziè, V. Logar, Z. Kristl, A. Krainer, I. Skrjanc and M. Kosir, Build. Environ., 70, 60 (2013); https://doi.org/10.1016/j.buildenv.2013.08.026.
A. Mills and S. Le Hunte, J. Photochem. Photobiol. Chem., 108, 1 (1997); https://doi.org/10.1016/S1010-6030(97)00118-4.
T. Noguchi, A. Fujishima, P. Sawunyama and K. Hashimoto, Environ. Sci. Technol., 32, 3831 (1998); https://doi.org/10.1021/es980299+.
E. Obuchi, T. Sakamoto, K. Nakano and F. Shiraishi, Chem. Eng. Sci., 54, 1525 (1999); https://doi.org/10.1016/S0009-2509(99)00067-6.
J.C. Yu, J. Yu, W. Ho and J. Zhao, J. Photochem. Photobiol. Chem., 148, 331 (2002); https://doi.org/10.1016/S1010-6030(02)00060-6.
R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, The Scientific World J., Article ID 686497 (2013); https://doi.org/10.1155/2013/686497.
Y. Zhang, R. Yang and R. Zhao, Atmos. Environ. Int., 37, 3395 (2003); https://doi.org/10.1016/S1352-2310(03)00357-1.
E. Palomares, A. Uzcátegui, C. Franch and A. Corma, Appl. Catal. B, 142–143, 795 (2013); https://doi.org/10.1016/j.apcatb.2013.06.015.
J. Chen and C. Poon, Environ. Sci. Technol., 43, 8948 (2009); https://doi.org/10.1021/es902359s.
C. Akly, P.A. Chadik and D.W. Mazyck, Appl. Catal. B, 99, 329 (2010); https://doi.org/10.1016/j.apcatb.2010.07.002.
K. Demeestere, J. Dewulf, B. De Witte, A. Beeldens and H. Van Langenhove, Build. Environ., 43, 406 (2008); https://doi.org/10.1016/j.buildenv.2007.01.016.
D. Farhanian and F. Haghighat, Build. Environ., 72, 34 (2014); https://doi.org/10.1016/j.buildenv.2013.10.014.
A. Fujishima and X.T. Zhang, C.R. Chim., 9, 750 (2006); https://doi.org/10.1016/j.crci.2005.02.055.
R.K. Nath, M.F.M. Zain and A.A.H. Kadhum, Adv. Nat. Appl. Sci., 6, 1030 (2012).
G.L. Guerrini, Constr. Build. Mater., 27, 165 (2012); https://doi.org/10.1016/j.conbuildmat.2011.07.065.
M. Safari, M. Rostami, M. Alizadeh, A. Alizadehbirjandi, S.A. Nakhli and R. Aminzadeh, Iran. J. Environ. Health Sci. Eng., 12, 1 (2014); https://doi.org/10.1186/2052-336X-12-1.
W.W. Nazaroff, Indoor Air, 23, 353 (2013); https://doi.org/10.1111/ina.12062.
M. Stock and S. Dunn, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1988 (2011); https://doi.org/10.1109/TUFFC.2011.2042.
R.K. Nath, M.F.M. Zain, A.A.H. Kadhum and A.B.M.A. Kaish, Constr. Build. Mater., 54, 348 (2014); https://doi.org/10.1016/j.conbuildmat.2013.12.072.
S.B. Kim and S.C. Hong, Appl. Catal. B, 35, 305 (2002); https://doi.org/10.1016/S0926-3373(01)00274-0.
Y. Ku, C. Ma and Y.S. Shen, Appl. Catal. B, 34, 181 (2001); https://doi.org/10.1016/S0926-3373(01)00216-8.
J. Zhao and X. Yang, Build. Environ., 38, 645 (2003); https://doi.org/10.1016/S0360-1323(02)00212-3.
Y. Zhang, R. Yang, Q. Xu and J. Mo, J. Air Waste Manage. Assoc., 57, 94 (2007); https://doi.org/10.1080/10473289.2007.10465302.
P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler and C. Gaysse, Catal. Today, 63, 363 (2000); https://doi.org/10.1016/S0920-5861(00)00480-6.
A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani and L. Palmisano, Catal. Today, 75, 87 (2002); https://doi.org/10.1016/S0920-5861(02)00048-2.
C. Yu, Deactivation and Regeneration of Environmentally Exposed Titanium Dioxide (TO2) based Products, Edited by E183413 DORN. Hong Kong: Testing Report for Environmental Protection Department, HKSAR (2003).
C.S. Chuang, M.K. Wang, C.H. Ko, C.C. Ou and C.H. Wu, Bioresour. Technol., 99, 954 (2008); https://doi.org/10.1016/j.biortech.2007.03.003.
T. Sano, N. Negishi, K. Takeuchi and S. Matsuzawa, Sol. Energy, 77, 543 (2004); https://doi.org/10.1016/j.solener.2004.03.018.
J.H. Wang and M.B. Ray, Sep. Purif. Technol., 19, 11 (2000); https://doi.org/10.1016/S1383-5866(99)00078-7.
M. Hinojosa-Reyes, V. Rodríguez-González and S. Arriaga, J. Hazard. Mater., 209-210, 365 (2012); https://doi.org/10.1016/j.jhazmat.2012.01.035.
R.M. Alberici and W.F. Jardim, Appl. Catal. B, 14, 55 (1997); https://doi.org/10.1016/S0926-3373(97)00012-X.
H.K. Dong, H.C. Dong, S.Y. Myoung and W.K. Kwang, J. Adhes. Sci. Technol., 27, 683 (2013); https://doi.org/10.1080/01694243.2012.690661.
A. Bouzaza and A. Laplanche, J. Photochem. Photobiol. Chem., 150, 207 (2002); https://doi.org/10.1016/S1010-6030(02)00088-6.
N. Sobana and M. Swaminathan, Sol. Energy Mater. Sol. Cells, 91, 727 (2007); https://doi.org/10.1016/j.solmat.2006.12.013.
R.K. Nath and M.F.M. Zain, Adv. Environ. Biol., 9, 1 (2015).