Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth of Microbial Cells on Modified Montmorillonites with Crude Oil Hydrocarbons as Carbon Source
Corresponding Author(s) : Uzochukwu C. Ugochukwu
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
The effect of modified montmorillonites on microbial growth with crude oil as carbon source was investigated in aqueous clay/oil microcosm experiments with microorganism community that is predominantly Alcanivorax spp as the hydrocarbon degraders. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonites respectively which were used in this study. The parameters used for the assessment of the effect of the clay samples on microbial growth were maximum cell yield, specific growth rate and percentage utilization of hydrocarbons. The study estimated percentage utilization of the hydrocarbons based entirely on growth in the exponential phase. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium-montmorillonite did not stimulate microbial growth whereas unmodified montmorillonite, calcium- and ferric(III)-montmorillonite were able to stimulate the growth of the microbial cells. The estimated hydrocarbon utilization indicated that appreciable percentage of hydrocarbons was utilized in Ca- and Fe(III)-montmorillonite-oil-microbe systems (63 and 57 % respectively) unlike in organo-, potassium- and acid activated montmorillonite-oil-microbe systems with low hydrocarbon utilization (25, 21 and 15 % respectively).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Kanaly and S. Harayama, J. Bacteriol., 182, 2059 (2000); https://doi.org/10.1128/JB.182.8.2059-2067.2000.
- L.M. Gieg and J.M. Suflita, eds: B. Oliver and M. Magot, Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in PetroleumLaden Environments, In: Petroleum Microbiology, ASM Press, Washington, DC, pp. 277-300 (2005).
- R. Rabus, eds: B. Oliver and M. Magot, Biodegradation of Hydrocarbons under Anoxic Conditions, In: Petroleum Microbiology (eds.), ASM Press, Washington, DC, pp. 337-356 (2005).
- J. Connan, G. Lacrampe-Couloume and M. Magot, Anaerobic Biodegradation in Reservoirs: A Widespread Phenomenon in Nature, 8th International Meeting on Organic Geochemistry, September 22-26, Maastricht, The Netherlands, pp. 5-6 (1997).
- I.M. Head, D.M. Jones and S.R. Larter, Nature, 426, 344 (2003); https://doi.org/10.1038/nature02134.
- K.J. Rockne and K.R. Reddy, Bioremediation of Contaminated Sites Invited Theme Paper, International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions. Indian Institute of Technology, Madra, India (2003).
- G. Stotzky and L.T. Rem, Can. J. Microbiol., 12, 547 (1966); https://doi.org/10.1139/m66-078.
- M.C.M. Van Loosdrecht, J. Lyklema, W. Norde and J.B. Zehnder, Microbiol. Rev., 54, 75 (1990).
- W.F. Guerin and S.A. Boyd, Appl. Environ. Microbiol., 58, 1142 (1992).
- D.B. Knaebel, T.W. Federle, D.C. Mcavoy and J.R. Vestal, Appl. Environ. Microbiol., 60, 4500 (1994).
- J.J. Ortega-Calvo and C. Saiz-Jimenez, Appl. Environ. Microbiol., 64, 3123 (1998).
- S.K. Chaerun and K. Tazaki, Clay Miner., 40, 481 (2005); https://doi.org/10.1180/0009855054040185.
- K. Tazaki and S.K. Chaerun, Front. Mater. Sci. China, 2, 120 (2008); https://doi.org/10.1007/s11706-008-0022-8.
- L.N. Warr, J.N. Perdrial, M. Lett, A. Heinrich-Salmeron and M. Khodja, Appl. Clay Sci., 46, 337 (2009); https://doi.org/10.1016/j.clay.2009.09.012.
- M. Schffenbauer and G. Stotzky, Appl. Environ. Microbiol., 43, 590 (1982).
- M. Khanna and G. Stotzky, Appl. Environ. Microbiol., 58, 1930 (1992).
- C. Vettori, L. Calamai, M. Yoder, G. Stotzky and E. Gallori, Soil Biol. Biochem., 31, 587 (1999); https://doi.org/10.1016/S0038-0717(98)00162-X.
- Z. Lin and R.W. Puls, Environ. Geol., 39, 753 (2000); https://doi.org/10.1007/s002540050490.
- E. Galan, M.I. Carretero and J.C. Fernández-Caliani, Clay Miner., 34, 99 (1999); https://doi.org/10.1180/000985599546118.
- M. Dubiková, P. Cambier, V. Sucha and M. Caplovicová, Appl. Geochem., 17, 245 (2002); https://doi.org/10.1016/S0883-2927(01)00081-6.
- P. Komadel, Clay Miner., 38, 127 (2003); https://doi.org/10.1180/0009855033810083.
- P. Pushpaletha, S. Rugmini and M. Lalithambika, Appl. Clay Sci., 30, 141 (2005); https://doi.org/10.1016/j.clay.2005.03.011.
- C.R. Theocharis, K.J. s’Jacob and A.C. Gray, J. Chem. Soc., Faraday Trans., 84, 1509 (1988); https://doi.org/10.1039/f19888401509.
- M.C. Hermosin, M.A. Ulibarri, M. Mansour and J. Cornejo, Fresenius Environ. Bull., 1, 472 (1992).
- L. Groisman, C. Rav-acha, Z. Gerstl and U. Mingelgrin, Appl. Clay Sci., 24, 159 (2004a); https://doi.org/10.1016/j.clay.2003.02.001.
- C.R. Reddy, G. Nagendrappa and B.S. Jai Prakash, Catal. Commun., 8, 241 (2007); https://doi.org/10.1016/j.catcom.2006.06.023.
- U.C. Ugochukwu, M.D. Jones, I.M. Head, D.A.C. Manning and C.I. Fialips, Int. Biodeter. Biodegrad., 88, 185 (2014); https://doi.org/10.1016/j.ibiod.2013.10.018.
- U.C. Ugochukwu, D.A.C. Manning and C.I. Fialips, J. Environ. Manage., 142, 30 (2014); https://doi.org/10.1016/j.jenvman.2014.03.018.
- S. Simkins and M. Alexander, Appl. Environ. Microbiol., 47, 1299 (1984).
- M. Alexander, Acclimation, Kinetics, Sorption and Mechanism of Utilization, In: Biodegradation and Bioremediation, Academic press, Sandiego, California, USA, edn 2, pp. 9-150 (1999).
- J.J. Bright and M. Fletcher, Appl. Environ. Microbiol., 45, 818 (1983).
- M. Fletcher and K.C. Marshall, Adv. Microb. Ecol., 6, 199 (1982); https://doi.org/10.1007/978-1-4615-8318-9_6.
- W.F. Jaynes and S.A. Boyd, Clays Clay Miner., 39, 428 (1991); https://doi.org/10.1346/CCMN.1991.0390412.
References
R.A. Kanaly and S. Harayama, J. Bacteriol., 182, 2059 (2000); https://doi.org/10.1128/JB.182.8.2059-2067.2000.
L.M. Gieg and J.M. Suflita, eds: B. Oliver and M. Magot, Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in PetroleumLaden Environments, In: Petroleum Microbiology, ASM Press, Washington, DC, pp. 277-300 (2005).
R. Rabus, eds: B. Oliver and M. Magot, Biodegradation of Hydrocarbons under Anoxic Conditions, In: Petroleum Microbiology (eds.), ASM Press, Washington, DC, pp. 337-356 (2005).
J. Connan, G. Lacrampe-Couloume and M. Magot, Anaerobic Biodegradation in Reservoirs: A Widespread Phenomenon in Nature, 8th International Meeting on Organic Geochemistry, September 22-26, Maastricht, The Netherlands, pp. 5-6 (1997).
I.M. Head, D.M. Jones and S.R. Larter, Nature, 426, 344 (2003); https://doi.org/10.1038/nature02134.
K.J. Rockne and K.R. Reddy, Bioremediation of Contaminated Sites Invited Theme Paper, International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions. Indian Institute of Technology, Madra, India (2003).
G. Stotzky and L.T. Rem, Can. J. Microbiol., 12, 547 (1966); https://doi.org/10.1139/m66-078.
M.C.M. Van Loosdrecht, J. Lyklema, W. Norde and J.B. Zehnder, Microbiol. Rev., 54, 75 (1990).
W.F. Guerin and S.A. Boyd, Appl. Environ. Microbiol., 58, 1142 (1992).
D.B. Knaebel, T.W. Federle, D.C. Mcavoy and J.R. Vestal, Appl. Environ. Microbiol., 60, 4500 (1994).
J.J. Ortega-Calvo and C. Saiz-Jimenez, Appl. Environ. Microbiol., 64, 3123 (1998).
S.K. Chaerun and K. Tazaki, Clay Miner., 40, 481 (2005); https://doi.org/10.1180/0009855054040185.
K. Tazaki and S.K. Chaerun, Front. Mater. Sci. China, 2, 120 (2008); https://doi.org/10.1007/s11706-008-0022-8.
L.N. Warr, J.N. Perdrial, M. Lett, A. Heinrich-Salmeron and M. Khodja, Appl. Clay Sci., 46, 337 (2009); https://doi.org/10.1016/j.clay.2009.09.012.
M. Schffenbauer and G. Stotzky, Appl. Environ. Microbiol., 43, 590 (1982).
M. Khanna and G. Stotzky, Appl. Environ. Microbiol., 58, 1930 (1992).
C. Vettori, L. Calamai, M. Yoder, G. Stotzky and E. Gallori, Soil Biol. Biochem., 31, 587 (1999); https://doi.org/10.1016/S0038-0717(98)00162-X.
Z. Lin and R.W. Puls, Environ. Geol., 39, 753 (2000); https://doi.org/10.1007/s002540050490.
E. Galan, M.I. Carretero and J.C. Fernández-Caliani, Clay Miner., 34, 99 (1999); https://doi.org/10.1180/000985599546118.
M. Dubiková, P. Cambier, V. Sucha and M. Caplovicová, Appl. Geochem., 17, 245 (2002); https://doi.org/10.1016/S0883-2927(01)00081-6.
P. Komadel, Clay Miner., 38, 127 (2003); https://doi.org/10.1180/0009855033810083.
P. Pushpaletha, S. Rugmini and M. Lalithambika, Appl. Clay Sci., 30, 141 (2005); https://doi.org/10.1016/j.clay.2005.03.011.
C.R. Theocharis, K.J. s’Jacob and A.C. Gray, J. Chem. Soc., Faraday Trans., 84, 1509 (1988); https://doi.org/10.1039/f19888401509.
M.C. Hermosin, M.A. Ulibarri, M. Mansour and J. Cornejo, Fresenius Environ. Bull., 1, 472 (1992).
L. Groisman, C. Rav-acha, Z. Gerstl and U. Mingelgrin, Appl. Clay Sci., 24, 159 (2004a); https://doi.org/10.1016/j.clay.2003.02.001.
C.R. Reddy, G. Nagendrappa and B.S. Jai Prakash, Catal. Commun., 8, 241 (2007); https://doi.org/10.1016/j.catcom.2006.06.023.
U.C. Ugochukwu, M.D. Jones, I.M. Head, D.A.C. Manning and C.I. Fialips, Int. Biodeter. Biodegrad., 88, 185 (2014); https://doi.org/10.1016/j.ibiod.2013.10.018.
U.C. Ugochukwu, D.A.C. Manning and C.I. Fialips, J. Environ. Manage., 142, 30 (2014); https://doi.org/10.1016/j.jenvman.2014.03.018.
S. Simkins and M. Alexander, Appl. Environ. Microbiol., 47, 1299 (1984).
M. Alexander, Acclimation, Kinetics, Sorption and Mechanism of Utilization, In: Biodegradation and Bioremediation, Academic press, Sandiego, California, USA, edn 2, pp. 9-150 (1999).
J.J. Bright and M. Fletcher, Appl. Environ. Microbiol., 45, 818 (1983).
M. Fletcher and K.C. Marshall, Adv. Microb. Ecol., 6, 199 (1982); https://doi.org/10.1007/978-1-4615-8318-9_6.
W.F. Jaynes and S.A. Boyd, Clays Clay Miner., 39, 428 (1991); https://doi.org/10.1346/CCMN.1991.0390412.