Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Measurements and Modeling of Excess Molar Enthalpy of Binary Mixtures of Oxygenate and Hydrocarbons
Corresponding Author(s) : Sanjeev Maken
Asian Journal of Chemistry,
Vol. 30 No. 4 (2018): Vol 30 Issue 4
Abstract
The thermodynamic properties of the binary mixtures having potential oxygenates, biodiesel, aromatic and aliphatic compounds are of considerable importance to chemical engineers in formulation of motor fuel. In order to study the interactions of oxygenate with fuel components, excess molar enthalpy for 2-propanol (1) + aromatic hydrocarbon (2) mixtures were measured with flow microcalorimeter at 303.15 K. At equimole fraction, excess enthalpy values follow the order as: n-hexane > cyclohexane and 2-propanol > 1-propanol. The data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson (PFP) theory and Flory-Treszczanowicz-Benson association (FTB) model. It has been observed that while Prigogine-Flory-Patterson theory fails to predict the excess enthalpy (HmE) values for these system in the composition range x1 > 0.05, agreement with experimental values is reasonably good in propanol lean region. Flory-Treszczanowicz-Benson (FTB) association model and graphtheoretical approach predict the measured HmE quite well.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Aguilar, F.E.M. Alaoui, J.J. Segovia, M.A. Villamañán and E.A. Montero, Fluid Phase Equilib., 315, 1 (2012); https://doi.org/10.1016/j.fluid.2011.11.005.
- F.E.M. Alaoui, E.A. Montero, J.-P. Bazile, F. Aguilar and C. Boned, J. Chem. Thermodyn., 43, 1768 (2011); https://doi.org/10.1016/j.jct.2011.06.006.
- F. Ancillotti and V. Fattore, Fuel Process. Technol., 57, 163 (1998); https://doi.org/10.1016/S0378-3820(98)00081-2.
- P. McKendry, Bioresour. Technol., 83, 37 (2002); https://doi.org/10.1016/S0960-8524(01)00118-3.
- S. Zhang, Y. Yan, T. Li and Z. Ren, Bioresour. Technol., 96, 545 (2005); https://doi.org/10.1016/j.biortech.2004.06.015.
- A. Murcak, C. Haþimoglu, I. Çevik, M. Karabektas and G. Ergen, Fuel, 109, 582 (2013); https://doi.org/10.1016/j.fuel.2013.03.014.
- E.W. de Menezes, R. Cataluña, D. Samios and R. Silva, Fuel, 85, 2567 (2006); https://doi.org/10.1016/j.fuel.2006.04.014.
- I.-C. Hwang, S.-J. Park and S.-J. In, J. Ind. Eng. Chem., 20, 3292 (2014); https://doi.org/10.1016/j.jiec.2013.12.010.
- M. Karabektas, G. Ergen and M. Hosoz, Fuel, 115, 855 (2014); https://doi.org/10.1016/j.fuel.2012.12.062.
- Q.N. Chan, Y. Bao and S. Kook, Fuel, 130, 228 (2014); https://doi.org/10.1016/j.fuel.2014.04.015.
- A. Mejía, H. Segura and M. Cartes, Fuel, 116, 183 (2014); https://doi.org/10.1016/j.fuel.2013.07.107.
- R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
- S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
- S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 199, 42 (2014); https://doi.org/10.1016/j.molliq.2014.08.011.
- S. Gahlyan, M. Rani, I. Lee, I. Moon and S. Maken, Korean J. Chem. Eng., 32, 168 (2015); https://doi.org/10.1007/s11814-014-0200-6.
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents. Physical Properties and Methods of Purification, Wiley, New York, edn 4 (1986).
- A.I. Vogel, A Text Book of Practical Organic Chemistry, ELBS Longman, London, edn 4 (1978).
- P. Monk, I. Wadsö, P. Karvonen, A.I. Virtanen and J. Paasivirta, Acta Chem. Scand., 22, 1842 (1968); https://doi.org/10.3891/acta.chem.scand.22-1842.
- D.S. Adcock and M.L. McGlashan, Proc. R. Soc. Lond. A Math. Phys. Sci., 226, 266 (1954); https://doi.org/10.1098/rspa.1954.0253.
- A. Maken and S. Maken, J. Ind. Eng. Chem., 18, 1013 (2012); https://doi.org/10.1016/j.jiec.2011.11.139.
- R.H. Stokes, K.N. Marsh and R.P. Tomlins, J. Chem. Thermodyn., 1, 211 (1969); https://doi.org/10.1016/0021-9614(69)90059-7.
- O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
- S. Kumar, A. Maken, S. Agarwal and S. Maken, J. Mol. Liq., 155, 115 (2010); https://doi.org/10.1016/j.molliq.2010.05.023.
- A. Maken and S. Maken, J. Ind. Eng. Chem., 18, 1013 (2012); https://doi.org/10.1016/j.jiec.2011.11.139.
- P.J. Flory, J. Am. Chem. Soc., 87, 1833 (1965); https://doi.org/10.1021/ja01087a002.
- A. Abe and P.J. Flory, J. Am. Chem. Soc., 87, 1838 (1965); https://doi.org/10.1021/ja01087a003.
- I. Prigogine, N. Trappeniers and V. Mathot, Discuss. Faraday Soc., 15, 93 (1953); https://doi.org/10.1039/df9531500093.
- D. Patterson and G. Delmas, Discuss. Faraday Soc., 49, 98 (1970); https://doi.org/10.1039/df9704900098.
- I. Prigogine, N. Trappeniers and V. Mathot, J. Chem. Phys., 21, 559 (1953); https://doi.org/10.1063/1.1698950.
- I. Prigogine, A. Bellemans and V. Mathot, The Molecular Theory of Solutions, North-Holland Publishing Company, Amsterdam, edn. 1 (1957).
- A.J. Treszczanowicz and G.C. Benson, Fluid Phase Equilib., 23, 117 (1985); https://doi.org/10.1016/0378-3812(85)90001-9.
- M. Rani, S. Agarwal, P. Lahot and S. Maken, J. Ind. Eng. Chem., 19, 1715 (2013); https://doi.org/10.1016/j.jiec.2013.02.011.
- S. Gahlyan, S. Verma, M. Rani, S. Maken, J. Mol. Liq., 244, 233 (2017); https://doi.org/10.1016/j.molliq.2017.09.015.
References
F. Aguilar, F.E.M. Alaoui, J.J. Segovia, M.A. Villamañán and E.A. Montero, Fluid Phase Equilib., 315, 1 (2012); https://doi.org/10.1016/j.fluid.2011.11.005.
F.E.M. Alaoui, E.A. Montero, J.-P. Bazile, F. Aguilar and C. Boned, J. Chem. Thermodyn., 43, 1768 (2011); https://doi.org/10.1016/j.jct.2011.06.006.
F. Ancillotti and V. Fattore, Fuel Process. Technol., 57, 163 (1998); https://doi.org/10.1016/S0378-3820(98)00081-2.
P. McKendry, Bioresour. Technol., 83, 37 (2002); https://doi.org/10.1016/S0960-8524(01)00118-3.
S. Zhang, Y. Yan, T. Li and Z. Ren, Bioresour. Technol., 96, 545 (2005); https://doi.org/10.1016/j.biortech.2004.06.015.
A. Murcak, C. Haþimoglu, I. Çevik, M. Karabektas and G. Ergen, Fuel, 109, 582 (2013); https://doi.org/10.1016/j.fuel.2013.03.014.
E.W. de Menezes, R. Cataluña, D. Samios and R. Silva, Fuel, 85, 2567 (2006); https://doi.org/10.1016/j.fuel.2006.04.014.
I.-C. Hwang, S.-J. Park and S.-J. In, J. Ind. Eng. Chem., 20, 3292 (2014); https://doi.org/10.1016/j.jiec.2013.12.010.
M. Karabektas, G. Ergen and M. Hosoz, Fuel, 115, 855 (2014); https://doi.org/10.1016/j.fuel.2012.12.062.
Q.N. Chan, Y. Bao and S. Kook, Fuel, 130, 228 (2014); https://doi.org/10.1016/j.fuel.2014.04.015.
A. Mejía, H. Segura and M. Cartes, Fuel, 116, 183 (2014); https://doi.org/10.1016/j.fuel.2013.07.107.
R. Sharma, R.C. Thakur and B. Saini, Asian J. Chem., 28, 2331 (2016); https://doi.org/10.14233/ajchem.2016.20010.
S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 199, 42 (2014); https://doi.org/10.1016/j.molliq.2014.08.011.
S. Gahlyan, M. Rani, I. Lee, I. Moon and S. Maken, Korean J. Chem. Eng., 32, 168 (2015); https://doi.org/10.1007/s11814-014-0200-6.
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents. Physical Properties and Methods of Purification, Wiley, New York, edn 4 (1986).
A.I. Vogel, A Text Book of Practical Organic Chemistry, ELBS Longman, London, edn 4 (1978).
P. Monk, I. Wadsö, P. Karvonen, A.I. Virtanen and J. Paasivirta, Acta Chem. Scand., 22, 1842 (1968); https://doi.org/10.3891/acta.chem.scand.22-1842.
D.S. Adcock and M.L. McGlashan, Proc. R. Soc. Lond. A Math. Phys. Sci., 226, 266 (1954); https://doi.org/10.1098/rspa.1954.0253.
A. Maken and S. Maken, J. Ind. Eng. Chem., 18, 1013 (2012); https://doi.org/10.1016/j.jiec.2011.11.139.
R.H. Stokes, K.N. Marsh and R.P. Tomlins, J. Chem. Thermodyn., 1, 211 (1969); https://doi.org/10.1016/0021-9614(69)90059-7.
O. Redlich and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948); https://doi.org/10.1021/ie50458a036.
S. Kumar, A. Maken, S. Agarwal and S. Maken, J. Mol. Liq., 155, 115 (2010); https://doi.org/10.1016/j.molliq.2010.05.023.
A. Maken and S. Maken, J. Ind. Eng. Chem., 18, 1013 (2012); https://doi.org/10.1016/j.jiec.2011.11.139.
P.J. Flory, J. Am. Chem. Soc., 87, 1833 (1965); https://doi.org/10.1021/ja01087a002.
A. Abe and P.J. Flory, J. Am. Chem. Soc., 87, 1838 (1965); https://doi.org/10.1021/ja01087a003.
I. Prigogine, N. Trappeniers and V. Mathot, Discuss. Faraday Soc., 15, 93 (1953); https://doi.org/10.1039/df9531500093.
D. Patterson and G. Delmas, Discuss. Faraday Soc., 49, 98 (1970); https://doi.org/10.1039/df9704900098.
I. Prigogine, N. Trappeniers and V. Mathot, J. Chem. Phys., 21, 559 (1953); https://doi.org/10.1063/1.1698950.
I. Prigogine, A. Bellemans and V. Mathot, The Molecular Theory of Solutions, North-Holland Publishing Company, Amsterdam, edn. 1 (1957).
A.J. Treszczanowicz and G.C. Benson, Fluid Phase Equilib., 23, 117 (1985); https://doi.org/10.1016/0378-3812(85)90001-9.
M. Rani, S. Agarwal, P. Lahot and S. Maken, J. Ind. Eng. Chem., 19, 1715 (2013); https://doi.org/10.1016/j.jiec.2013.02.011.
S. Gahlyan, S. Verma, M. Rani, S. Maken, J. Mol. Liq., 244, 233 (2017); https://doi.org/10.1016/j.molliq.2017.09.015.