Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Some New Chrysin Derivatives and Their Biological Assessment as Antibacterial, Antibiofilm and Antifungal Agent
Corresponding Author(s) : U.C. De
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
Some new derivatives of natural chrysin have been synthesized and evaluated for antibacterial, antibiofilm and antifungal activities. Three compounds, namely 2a, 2e, 2i showed excellent activities (MIC 14.0-18.3 μg/mL) against six bacterial and two fungal type strains while most of the other compounds showed comparatively low to moderate values of such activities. Significant antibiofilm and bactericidal activities (MBC ranges from 17-20 μg/mL) were also observed for 2a, 2e, 2i against pneumonia causing two bacterial strains. This study further indicated that the chrysin compounds with 7-O-alkyl type substitution were much more effective than corresponding aryl substituted congeners which signifies that 7-O position of chrysin is crucial for antimicrobial activities. Thus, this article would contribute to further design and development of potential antimicrobial agents via structural modulation of natural chrysin, which is a potential molecular skeleton with diverse biological activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.L. Silver, Microbiol. Rev., 24, 71 (2011); https://doi.org/10.1128/CMR.00030-10.
- G.M. Cragg and D.J. Newman, Biochim. Biophys. Acta, 1830, 3670 (2013); https://doi.org/10.1016/j.bbagen.2013.02.008.
- A. Giacometti, O. Cirioni, A.M. Schimizzi, M.S. Del Prete, F. Barchiesi, M.M. D’Errico, E. Petrelli and G. Scalise, J. Clin. Microbiol., 38, 918 (2000).
- V.E. Wagner and B.H. Iglewski, Clin. Rev. Allergy Immunol., 35, 124 (2008); https://doi.org/10.1007/s12016-008-8079-9.
- M.C. Das, S. Paul, P. Gupta, P. Tribedi, S. Sarkar, S. Bhattacharjee and D. Manna, J. Appl. Microbiol., 120, 842 (2016); https://doi.org/10.1111/jam.13063.
- A. Adonizio, K.F. Kong and K. Mathee, Antimicrob. Agents Chemother., 52, 198 (2008); https://doi.org/10.1128/AAC.00612-07.
- S. Ponnuswamy, A. Akila, D.D. Rajakumari, S. Suressh and G. Usha, J. Chem. Sci., 127, 2051 (2015); https://doi.org/10.1007/s12039-015-0974-z.
- H. Sudhamani, S.T. Basha, N. Venkateswarlu, T. Vijaya and C.N. Raju, J. Chem. Sci., 127, 1739 (2015); https://doi.org/10.1007/s12039-015-0935-6.
- M. Zayane, A. Romdhane, M. Daami-Remadi and H.B. Jannet, J. Chem. Sci., 127, 1619 (2015); https://doi.org/10.1007/s12039-015-0927-6.
- A.B. Reddy, R.V. Hymavathi and G.N. Swamy, J. Chem. Sci., 125, 495 (2013); https://doi.org/10.1007/s12039-013-0417-7.
- A. Bishnoi, S. Singh, A.K. Tiwari, K. Srivastava, R. Raghuvir and C.M. Tripathi, J. Chem. Sci., 125, 305 (2013); https://doi.org/10.1007/s12039-013-0367-0.
- A. Saundane, M. Yarlakatti, P. Walmik and V.I. Katkarf, J. Chem. Sci., 124, 469 (2012); https://doi.org/10.1007/s12039-011-0180-6.
- R. Kharb, M. Shahar Yar and P.C. Sharma, Curr. Med. Chem., 18, 3265 (2011); https://doi.org/10.2174/092986711796391615.
- A. Sharma, V. Kumar, R. Kharb, S. Kumar, P.C. Sharma and D.P. Pathak, Curr. Pharm. Des., 22, 3265 (2016); https://doi.org/10.2174/1381612822666160226144333.
- R. Kharb, P.C. Sharma and M.S. Yar, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304.
- P.C. Sharma, P. Seema, K.K. Bansal and A. Saini, Chem. Biol. Lett., 4, 63 (2017).
- B. Kedika, K. Thotla, V. Noole and K.R. Chepyala, J. Chem. Pharm. Res., 8, 1210 (2016).
- L.H. Cazarolli, L. Zanatta, E.H. Alberton, M.S. Figueiredo, P. Folador, R.G. Damazio, M.G. Pizzolatti and F.R. Silva, Mini Rev. Med. Chem., 8, 1429 (2008); https://doi.org/10.2174/138955708786369564.
- Y. Liu, X. Song, J. He, X. Zheng and H. Wu, Med. Chem. Res., 23, 555 (2014); https://doi.org/10.1007/s00044-013-0711-4.
- H. Park, T.T. Dao and H.P. Kim, Eur. J. Med. Chem., 40, 943 (2005); https://doi.org/10.1016/j.ejmech.2005.04.013.
- Q.W. Shi, X.H. Su and H. Kiyota, Chem. Rev., 108, 4295 (2008); https://doi.org/10.1021/cr078350s.
- K.S. Lam, Trends Microbiol., 15, 279 (2007); https://doi.org/10.1016/j.tim.2007.04.001.
- E. Brown, N.S. Hurd, S. McCall and T.E. Ceremuga, Am. Assoc. Nurse. Anes. J., 5, 333 (2007).
- E. Leonard, Y. Yan, K.H. Lim and M.A. Koffas, Appl. Environ. Microbiol., 71, 8241 (2005); https://doi.org/10.1128/AEM.71.12.8241-8248.2005.
- X. Zheng, W.D. Meng, Y.Y. Xu, J.G. Cao and F.L. Qing, Bioorg. Med. Chem. Lett., 13, 881 (2003); https://doi.org/10.1016/S0960-894X(02)01081-8.
- Z.Y. Zhu, W.X. Wang, Z.Q. Wang, L.J. Chen, J.Y. Zhang, X.C. Liu, S.P. Wu and Y.M. Zhang, Eur. J. Med. Chem., 75, 297 (2014); https://doi.org/10.1016/j.ejmech.2013.12.044.
- T. Zhang, X. Chen, L. Qu, J. Wu, R. Cui and Y. Zhao, Bioorg. Med. Chem., 12, 6097 (2004); https://doi.org/10.1016/j.bmc.2004.09.013.
- L.P. Sun, A.L. Chen, H.C. Hung, Y.H. Chien, J.S. Huang, C.Y. Huang, Y.W. Chen and C.N. Chen, J. Agric. Food Chem., 60, 11748 (2012); https://doi.org/10.1021/jf303261r.
- I.C. Villar, R. Jimenez, M. Galisteo, M. Garcia-Saura, F.A. Zarzuelo and J. Duarte, Planta Med., 68, 847 (2002); https://doi.org/10.1055/s-2002-34400.
- G.K. Harris, Y. Qian, S.S. Leonard, D.C. Sbarra and X. Shi, J. Nutr., 136, 1517 (2006); https://doi.org/10.1093/jn/136.6.1517.
- K. Hu, W. Wang, H. Cheng, S.S. Pan and J. Ren, Med. Chem. Res., 20, 838 (2011); https://doi.org/10.1007/s00044-010-9395-1.
- M.C. Das, P. Sandhu, P. Gupta, P. Rudrapaul, U.C. De, P. Tribedi, Y. Akhter and S. Bhattacharjee, Sci. Rep., 6, 23347 (2016); https://doi.org/10.1038/srep23347.
- M.V. Veselovskaya, M.M. Garazd, A.S. Ogorodniichuk, Y.L. Garazd and V.P. Khilya, Chem. Nat. Compd., 44, 704 (2008); https://doi.org/10.1007/s10600-009-9194-4.
- Q. Li, L. Shi, Q.-S. Li, P.-G. Liu, Y. Luo, J. Zhao and H.-L. Zhu, Bioorg. Med. Chem., 17, 6264 (2009); https://doi.org/10.1016/j.bmc.2009.07.046.
- K. Suresh Babu, T. Hari Babu, P.V. Srinivas, K. Hara Kishore, U.S.N. Murthy and J.M. Rao, Bioorg. Med. Chem. Lett., 16, 221 (2006); https://doi.org/10.1016/j.bmcl.2005.09.009.
- A. Giacometti, O. Cirioni, F. Barchiesi, M.S. Del Prete, M. Fortuna, F. Caselli and G. Scalise, Antimicrob. Agents Chemother., 44, 1694 (2000); https://doi.org/10.1128/AAC.44.6.1694-1696.2000.
- D. Ribble, N.B. Goldstein, D.A. Norris and Y.G. Shellman, BMC Biotechnol., 5, 12 (2005); https://doi.org/10.1186/1472-6750-5-12.
- S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. BossyWetzel and D.R. Green, Cold Spring Harb. Protoc., 3, 4493 (2006); https://doi.org/10.1101/pdb.prot4465.
- C.S. Stepanovic, M.L. Cirkoric, L. Ranin and A.L. Svabicviahocic, Appl. Microbiol., 28, 326 (2004).
- D. Baskic, S. Popovic, P. Ristic and N. Arsenijevic, Cell Biol. Int., 30, 924 (2006); https://doi.org/10.1016/j.cellbi.2006.06.016.
References
L.L. Silver, Microbiol. Rev., 24, 71 (2011); https://doi.org/10.1128/CMR.00030-10.
G.M. Cragg and D.J. Newman, Biochim. Biophys. Acta, 1830, 3670 (2013); https://doi.org/10.1016/j.bbagen.2013.02.008.
A. Giacometti, O. Cirioni, A.M. Schimizzi, M.S. Del Prete, F. Barchiesi, M.M. D’Errico, E. Petrelli and G. Scalise, J. Clin. Microbiol., 38, 918 (2000).
V.E. Wagner and B.H. Iglewski, Clin. Rev. Allergy Immunol., 35, 124 (2008); https://doi.org/10.1007/s12016-008-8079-9.
M.C. Das, S. Paul, P. Gupta, P. Tribedi, S. Sarkar, S. Bhattacharjee and D. Manna, J. Appl. Microbiol., 120, 842 (2016); https://doi.org/10.1111/jam.13063.
A. Adonizio, K.F. Kong and K. Mathee, Antimicrob. Agents Chemother., 52, 198 (2008); https://doi.org/10.1128/AAC.00612-07.
S. Ponnuswamy, A. Akila, D.D. Rajakumari, S. Suressh and G. Usha, J. Chem. Sci., 127, 2051 (2015); https://doi.org/10.1007/s12039-015-0974-z.
H. Sudhamani, S.T. Basha, N. Venkateswarlu, T. Vijaya and C.N. Raju, J. Chem. Sci., 127, 1739 (2015); https://doi.org/10.1007/s12039-015-0935-6.
M. Zayane, A. Romdhane, M. Daami-Remadi and H.B. Jannet, J. Chem. Sci., 127, 1619 (2015); https://doi.org/10.1007/s12039-015-0927-6.
A.B. Reddy, R.V. Hymavathi and G.N. Swamy, J. Chem. Sci., 125, 495 (2013); https://doi.org/10.1007/s12039-013-0417-7.
A. Bishnoi, S. Singh, A.K. Tiwari, K. Srivastava, R. Raghuvir and C.M. Tripathi, J. Chem. Sci., 125, 305 (2013); https://doi.org/10.1007/s12039-013-0367-0.
A. Saundane, M. Yarlakatti, P. Walmik and V.I. Katkarf, J. Chem. Sci., 124, 469 (2012); https://doi.org/10.1007/s12039-011-0180-6.
R. Kharb, M. Shahar Yar and P.C. Sharma, Curr. Med. Chem., 18, 3265 (2011); https://doi.org/10.2174/092986711796391615.
A. Sharma, V. Kumar, R. Kharb, S. Kumar, P.C. Sharma and D.P. Pathak, Curr. Pharm. Des., 22, 3265 (2016); https://doi.org/10.2174/1381612822666160226144333.
R. Kharb, P.C. Sharma and M.S. Yar, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304.
P.C. Sharma, P. Seema, K.K. Bansal and A. Saini, Chem. Biol. Lett., 4, 63 (2017).
B. Kedika, K. Thotla, V. Noole and K.R. Chepyala, J. Chem. Pharm. Res., 8, 1210 (2016).
L.H. Cazarolli, L. Zanatta, E.H. Alberton, M.S. Figueiredo, P. Folador, R.G. Damazio, M.G. Pizzolatti and F.R. Silva, Mini Rev. Med. Chem., 8, 1429 (2008); https://doi.org/10.2174/138955708786369564.
Y. Liu, X. Song, J. He, X. Zheng and H. Wu, Med. Chem. Res., 23, 555 (2014); https://doi.org/10.1007/s00044-013-0711-4.
H. Park, T.T. Dao and H.P. Kim, Eur. J. Med. Chem., 40, 943 (2005); https://doi.org/10.1016/j.ejmech.2005.04.013.
Q.W. Shi, X.H. Su and H. Kiyota, Chem. Rev., 108, 4295 (2008); https://doi.org/10.1021/cr078350s.
K.S. Lam, Trends Microbiol., 15, 279 (2007); https://doi.org/10.1016/j.tim.2007.04.001.
E. Brown, N.S. Hurd, S. McCall and T.E. Ceremuga, Am. Assoc. Nurse. Anes. J., 5, 333 (2007).
E. Leonard, Y. Yan, K.H. Lim and M.A. Koffas, Appl. Environ. Microbiol., 71, 8241 (2005); https://doi.org/10.1128/AEM.71.12.8241-8248.2005.
X. Zheng, W.D. Meng, Y.Y. Xu, J.G. Cao and F.L. Qing, Bioorg. Med. Chem. Lett., 13, 881 (2003); https://doi.org/10.1016/S0960-894X(02)01081-8.
Z.Y. Zhu, W.X. Wang, Z.Q. Wang, L.J. Chen, J.Y. Zhang, X.C. Liu, S.P. Wu and Y.M. Zhang, Eur. J. Med. Chem., 75, 297 (2014); https://doi.org/10.1016/j.ejmech.2013.12.044.
T. Zhang, X. Chen, L. Qu, J. Wu, R. Cui and Y. Zhao, Bioorg. Med. Chem., 12, 6097 (2004); https://doi.org/10.1016/j.bmc.2004.09.013.
L.P. Sun, A.L. Chen, H.C. Hung, Y.H. Chien, J.S. Huang, C.Y. Huang, Y.W. Chen and C.N. Chen, J. Agric. Food Chem., 60, 11748 (2012); https://doi.org/10.1021/jf303261r.
I.C. Villar, R. Jimenez, M. Galisteo, M. Garcia-Saura, F.A. Zarzuelo and J. Duarte, Planta Med., 68, 847 (2002); https://doi.org/10.1055/s-2002-34400.
G.K. Harris, Y. Qian, S.S. Leonard, D.C. Sbarra and X. Shi, J. Nutr., 136, 1517 (2006); https://doi.org/10.1093/jn/136.6.1517.
K. Hu, W. Wang, H. Cheng, S.S. Pan and J. Ren, Med. Chem. Res., 20, 838 (2011); https://doi.org/10.1007/s00044-010-9395-1.
M.C. Das, P. Sandhu, P. Gupta, P. Rudrapaul, U.C. De, P. Tribedi, Y. Akhter and S. Bhattacharjee, Sci. Rep., 6, 23347 (2016); https://doi.org/10.1038/srep23347.
M.V. Veselovskaya, M.M. Garazd, A.S. Ogorodniichuk, Y.L. Garazd and V.P. Khilya, Chem. Nat. Compd., 44, 704 (2008); https://doi.org/10.1007/s10600-009-9194-4.
Q. Li, L. Shi, Q.-S. Li, P.-G. Liu, Y. Luo, J. Zhao and H.-L. Zhu, Bioorg. Med. Chem., 17, 6264 (2009); https://doi.org/10.1016/j.bmc.2009.07.046.
K. Suresh Babu, T. Hari Babu, P.V. Srinivas, K. Hara Kishore, U.S.N. Murthy and J.M. Rao, Bioorg. Med. Chem. Lett., 16, 221 (2006); https://doi.org/10.1016/j.bmcl.2005.09.009.
A. Giacometti, O. Cirioni, F. Barchiesi, M.S. Del Prete, M. Fortuna, F. Caselli and G. Scalise, Antimicrob. Agents Chemother., 44, 1694 (2000); https://doi.org/10.1128/AAC.44.6.1694-1696.2000.
D. Ribble, N.B. Goldstein, D.A. Norris and Y.G. Shellman, BMC Biotechnol., 5, 12 (2005); https://doi.org/10.1186/1472-6750-5-12.
S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. BossyWetzel and D.R. Green, Cold Spring Harb. Protoc., 3, 4493 (2006); https://doi.org/10.1101/pdb.prot4465.
C.S. Stepanovic, M.L. Cirkoric, L. Ranin and A.L. Svabicviahocic, Appl. Microbiol., 28, 326 (2004).
D. Baskic, S. Popovic, P. Ristic and N. Arsenijevic, Cell Biol. Int., 30, 924 (2006); https://doi.org/10.1016/j.cellbi.2006.06.016.